
NAVAL POSTGRADUATE SCHOOL
Monterey, California

AD-A274 916

S ELECTE
JAN 2 6 1994

A ~THESIS

An Automated
Ada Physical Source

Line Counter

by

Kevin J. Walsh

September 1993

Thesis Advisor. Tnimothy J. Shimeall

Approved for public release; distribution is unlimited.

94-02269

94 1 25 088 I8 1~1II~iluI1\

Best
Available

Copy

Foem.Aproved
REPORT DOCUMENTATION PAGE oMB No. 0704-o0)

Pihw po"tWbde for • t• moleti, of edomhon a etnisetwd to aws hour pe mep, mpadmgi to•m tw rvw mevw inh, d oseardirl exe" dWa sourc"
iherig nd mftem• the dm a~te nede, n oonItu n r.wewn Mv e ecletic. ci nkmlerno Send cmiwe regard ha burden eMan or ai die •aspc ciie

el. ci e so~nN, ung geomX tr recic th ento Washgtcn Headquats Soime, DukewaM. for kor•mobon Operbm and WRepot, 1215 Jlerson
Deve HWhe, Sute t204. A&e. VA MM-43M. and to ft Mae i UMngen a DW Buda, Pqwmork Reducton Proec (070"18o8) Wmeelw. DC

1. AGENCY USE ONLY (Leave BWan) 12REPORT DATE 3. REPORT TYPE AND DATES COVERED
F September 1993 Master's Thesis ,_,

4. TITLE AND SUBTITLE 6. FUNDING NUMBERS

An Automated Ada Physical Source Line Counter (U)

6. AUTHOR(S)

Walsh, Kevin John

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
Naval Postgraduate School REPORT NUMBER

Monterey, CA 93943-5000

9. SPONSORING/ MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/ MONITORING
AGENCY REPORT NUMBEA

11. SUPPLEMENTARY NOTES
The views expressed in this thesis are those of the author and do not reflect the official policy or position
of the Department of Defense or the United States Government.

12a. DISTRIBUTION / AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE
Unclassified/Unlimited

13. ABSTRACT (Maximum 200 wards)
Tools to count lines of code have not been standardized or automated in a flexible fashion. This lack of
flexibility can lead to ambiguous interpretations of the size of software modules, especially when the
person performing the measurement does not use the method or rules expected by the person requesting
the measurement. The Software Engineering Institute (SEI) Framework for Size Measurement provides a
basis for flexible design of software measurements. The SEI framework describes measurements using
nine attributes. This Framework is part of recently proposed DoD guidelines for software process
measurement. The problem that this thesis addresses is how to implement the SEI Framework for Size
Measurement to flexibility count lines of the code in Ada software. The approach is to build an automated
Ada Physical Source Line Counter that measures Ada source files and generates the appropriate reports.
The tool works as follows: the user defines the measurement constraints to the tool, which calls an Ada
parser to generate counts to be included in user-specified reports. The result is a program that takes user
requests and Ada source files and produces measurement reports as output. This program fully captures
the flexibility of the SEI framework along five of the nine measurement attributes.

14. SUBJECT TERMS 15. NUMBER OF PAGES
Software Metrics, Source Lines of Code, Ada 286

15. PHIGE COup

17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION 20. LIMITATION OF ABSTRACT
OF REPORT OF THIS PAGE OF ABSTRACT

Unclassified Unclassified UnclassifieI UL

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
Prescribed by ANSI Std. 239-18

Approved for public release; distribution is unlimited

An Automated Ada
Physical Source
Line Counter

by
Kevin J. Walsh

Major, United States Army
B.S.C.S., Youngstown State University, 1979

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF COMPUTER SCIENCE

from the

NAVAL POSTGRADUATE SCHOOL
September 1993

Author: !<"Jar ' (VCA0,

Kevin John ýtialsh

Approved By: 4 ý 0hmel.

Dr. Timothy Y. Shimeall, Thesis Advisor

' David A. Gaitros. Second Reader

Dr. Ted Lewis, Chairman,
Department of Computer Science

ABSTRACT

Tools to count lines of code have not been standardized or automated in a flexible

fashion. This lack of flexibility can lead to ambiguous interpretations of the size of software

modules, especially when the person performing the measurement does not use the method

or rules expected by the person requesting the measurement. The Software Engineering

Institute (SET) Framework for Size Measurement provides a basis for flexible design of

software measurements. The SEI framework describes measurements using nine attributes.

This Framework is part of recently proposed DoD guidelines for software process

measurement.

The problem that this thesis addresses is how to implement the SEI Framework for

Size Measurement to flexibility count lines of the code in Ada software.

The approach is to build an automated Ada Physical Source Line Counter that

measures Ada source files and generates the appropriate reports. The tool works as follows:

the user defines the measurement constraints to the tool, which calls an Ada parser to

generate counts to be included in user-specified reports.

The result is a program that takes user requests and Ada source files and produces

measurement reports as output. This program fully captures the flexibility of the SEI

framework along five of the nine measurement attributes.

Accesion For

• y, i INSPE . CTED 8 NTIS CRA&W

r7-DTuG TAB

JuJstifica~icor,

Dis it~'n~.....-By

Dist S i aI:

IA-I
Wi

TABLE OF CONTENTS

I. INTRODUCTION ... 1

A. BACKGROUND ... I

1. Size ... 2

2. Personnel/Effort ... 2

3. Computer Use .. 2

4. Schedule Progress ... 3

5. Requirement and Design Progress 3

6. Testing Progress/Quality .. 3

7. Incremental Release Content 3

8. Complexity ... 4

B. USERS OF SOFTWARE METRICS 4

C. WHY COUNTERS AT ALL? ... 6

1. Automated versus Manual Counters 6

2. Counting versus Reporting versus Tracking 6

D. PROBLEM DESCRIPTION .. 8

E. OVERVIEW OF THESIS .. 8

IU. SEI FRAMEW ORK ... 9

A. DEFINITION OF FRAMEWORK 9

1. A ttributes ... 10

2. V alues ... 10

3. Reports ... 11

B. APPLICATIONS OF FRAMEWORK 11

1. Software Size Measurement: 11

2. Software Effort and Schedule Measurement: 12

3. Software Quality Measurement: 12

C. AUTOMATION OF SIZE MEASURE 12

iv

D. PREVIOUS SIZE CALCULATORS 13

1. DOS Version of the SEI Framework on Size 13

2. PC-M etric for Pascal .. 13

E. SUM M ARY .. 14

IlI. TOOL DESIGN .. 15

A. ATTRIBUTES SUPPORTED .. 15

1. Statement Type .. 15

2. How Produced ... 16

3. O rigin .. 16

4. U sage .. 16

5. D elivery .. 17

6. Development Status ... 17

7. Clarifications (General and Ada Specific) 17

B. ATTRIBUTES NOT SUPPORTED 18

1. Functionality .. 18

2. Replications ... 18

C. DEFAULT REPORTS/OUTPUT 18

1. Report A .. 19

2. Report B .. 19

3. Report C .. 19

4. Report D .. 20

5. Report E .. 20

D. USER-DEFINED REPORTS/OUTPUT 21

E. DATA STRUCTURES ... 22

1. Variables used for every report 22

2. Size Attributes ... 23

3. Five Dimensional Arrays ... 24

4. Priority Arrays ... 24

V

5. Flags Array ... 25

6. Current Settings Record .. 25

7. Checklist Variables ... 25

F. OVERVIEW ... 26

G. USER INTERFACE ... 27

H. PARSER .. 32

I. REPORT GENERATOR .. 34

J. SUM M ARY .. 34

IV. TOOL USAGE .. 36

A. INTRODUCTION ... 36

B. REQUIREMENTS ... 36

1. Hardware ... 36

2. Softw are .. 36

3. Input ... 36

4. Legal Ada Syntax ... 36

C. LIM ITATIONS ... 37

1. Package Conflicts .. 37

2. Coding Style .. 37

D. COMMAND LINE INVOCATION 38

E. EXTENDED EXAMPLE ... 38

1. Sample Application ... 38

2. User Interface .. 39

3. Statement Processing .. 42

a. Executable Statements .. 42

b. Declaration Statements 44

c. Comments on Own Line 45

d. Banner Comments ... 46

e. Blank Lines .. 46

vi

f. OUTPUT47

F. SUM M ARY .. 53

V. SUMMARY AND CONCLUSIONS 55

A. RESEARCH SUMMARY ... 55

B. RECOMMENDATIONS .. 56

APPENDIX A USER MANUAL ... 58

A. REQUIREMENTS ... 58

1. Hardw are ... 58

2. Softw are .. 58

3. Input ... 58

4. Legal Ada Syntax ... 60

B. LIM ITATIONS ... 61

1. Package Conflicts .. 61

2. Coding Style .. 61

C. COMMAND LINE INVOCATION 62

D. USER INTERFACE ... 62

1. Push-buttons ... 63

2. Checkboxs .. 64

3. Radio-buttons .. 64

4. Labels and Text/Integer Keyin items 64

E. INTRODUCTORY PANEL ... 65

F. INPUT PANEL ... 65

G. ATIRIBUTE PANELS ... 66

H. CLARIFICATIONS (GENERAL and Ada) PANELS 72

I. GENERATE REPORT PANEL 72

J. QUIT PANEL .. 72

APPENDIX B. SOURCE CODE ... 77

APPENDIX C. EXTEND SAMPLE INPUT AND OUTPUT 244

vii

LIST OF REFERENCES ... 271

INITIAL DISTRIBUTION LIST .. 273

viii

LIST OF FIGURES

Figure 1 SEI Attributes supported and not supported 15
Figure 2 Written Description for Report A 19
Figure 3 Written description for report B 20
Figure 4 Written description for report C 20
Figure 5 Written description for report D 21
Figure 6 Written description for report E 21
Figure 7 Relationship of input file name and Ada source files to be measured 23
Figure 8 Attribute Statement Type values declared as an enumerated type 23
Figure 9 Declaration of five dimensional array 24
Figure 10 Declaration of Priority type array to track precedence levels 24
Figure 11 Declaration of FLAGS_TYPE_ARRAY 25
Figure 12 Example of FLAGSTYPEARRAY values set to true 25
Figure 13 Overview of the Automated Ada Physical Source Line Counter 26
Figure 14 Overview of User interface 31
Figure 15 Example of Ada code executed inside of Ayacc 32
Figure 16 Example of rule to find blank lines 32
Figure 17 Example of rules added to Aflex 33
Figure 18 Example of code to recognize Special comments 34
Figure 19 Example of Ada.y input file to Ayacc 37
Figure 20 Example of two different coding styles 38
Figure 21 Contents of EXAMPLEFILE 39
Figure 22 Example of text keyin fields 40
Figure 23 Example of marked checkboxs for selecting reports A - F 40
Figure 24 Example of customizing report F 41
Figure 25 Variables used during parsing of source files 42
Figure 26 Sample input code ... 44
Figure 27 Partial output of Report A 48
Figure 28 Partial output of Report B 49
Figure 29 Partial output of Report C 50
Figure 30 Partial output of Report D 51
Figure 31 Partial output of Report E 52
Figure 32 Partial output of Report F 54
Figure A-I Special Comments .. 59
Figure A-2 Example of Ada.y input file to Ayacc 61
Figure A-3 Example of two different coding styles 62
Figure A-4 Example of Push-buttons 63
Figure A-5 Available Report Names 64
Figure A-6 Text Keyin fields and labels 65
Figure A-7 Statement Type Panel 67
Figure A-8 How Produced Panel 68
Figure A-9 Origin Panel ... 69

ix

Figure A- 10 Usage and Delivery Options Panel 70
Figure A- 11 Development Status Panel 71
Figure A-12 Clarifications (general) Panel 73
Figure A-13 Clarifications (Ada) Panel 74
Figure A-14 Generate Report Panel 75
Figure A- 15 Quit Panel ... 76

ACKNOWLEDGEMENTS

This project is not the work of one individual alone. There is a large number of people

who contributed to this work both directly and indirectly. Although it would be impossible

to acknowledge all of them, I woukl like to take this opportunity to thank the major player,

Dr. Timothy J. Shimeall, who provided endless support and encouragement during this

work. His guidance was invaluable. Additionally, I would like to thank MAJ Gaitros for his

contribution in making this thesis more understandable. Thanks are -,lso due to Mr. Bob

Park and others at SEI for their previous work providing the basis for this thesis.

Bob Ordonio helped me see the light in numerous programming dark holes.

Finally, I would like to thank my wife, Susan, my son Sean and my daughter Sara, for

their loving support and understanding during the many nights spent at the terminals in the

Computer Science Lab.

Without the help and moral support of the above people and countless others, this work

would not have been possible.

xi

I. INTRODUCTION

A. BACKGROUND

From 1980 to 1985, software-related costs rose from 3 percent ($40 billion) of the U.S.

gross national product to 5 percent ($228 billion). Software effects are increasing, due in

part to: the decreasing cost of hardware, which has been cut in half every two years; the

increasing speed and capacity of computers to new applications as computers do tasks that

are either too complicated or too time-consuming to do manually. However, the systems

that rely on software will only use software that is reliable, easy to use, and accomplishes

the needs of the people using the systems. The software developer is tasked to ensure that

software is delivered on time, under budget and meeting or exceeding the performance

requirements. [BER 90]

Software is not just the code, but the entire set of documentation, operating

procedures, test cases, and programs associated with a computer-based system. The goal of

software engineering is to provide effective methods for producing software systems that

meet the needs of the customer, while conforming to the customer's schedule and budget

constraints. [BER 90]

Part of this process is to provide accurately-generated attributes to estimate cost and

effort, then track the ensuing process against the estimate. The field of computer science

does not currently quantify accurately its attributes. [BEI 90]

Beizer categorizes computer metrics into three groups, which are: Linguistic,

Structural, and Hybrid. Linguistic metrics are measurements without regard to

interpretation. For example, most counts of things are linguistic. The measurement of the

number of unique operands or number of unique operators is linguistic. The order of either

operands or operators is of little concern. The total number of operators or operands is the

target, not where in the code or how they interact with each other or other parts of the code.

[BEI 901

• ' II1

Structural metrics are based upon the structural relations between objects within the

program. Structural metrics measure the properties of the control flowgraphs of data

flowgraphs. An example would be to count the number of links, number of nodes, and

nesting depths. To accomplish this type of metric, the program would need to be

interpreted. Hybrid metrics are some combination of linguistic and structural. [BEI 90]

There are many different measurements currently in use. Some measure the size of a

project from the number of lines it contains, others base the size on the number of operators.

There are measures for productivity, schedule, effort, quality, requirements designed,

detailed designs, and use of availability of computer resources. Some commonly used

metrics include, but are not limited to Size, Personnel, Computer use, Unit Progress,

Schedule Progress, Design Complexity, Requirement and design Progress, Testing

Progress, and Incremental release content. The next sections will briefly discuss some

metrics available and the benefits of using them.

1. Size

The size measurement may reflect either the planned size or current or estimated

size. One possible unit of measure is lines of code to be developed, modified, planned, and

reused. This metric can help plan the total effort and schedule and measure productivity.

For an example, an increase in the size of the software code, shows the project will require

more resources of time, money and personnel.

2. Personnel/Effort

The personnel/effort measurement includes the estimated and current number of

personnel working on the project. One possible unit of measure is time card hours. This

metric measures productivity, and how staffing is effecting the planned schedule and cost.

3. Computer Use

The computer use measurement includes the estimated and actual percentage of

the target system's hardware CPU, storage, and communication capacity. A possible unit

2

of measure is the CPU speed. This metric shows if the planned target system is capable of

the current requirements and if any spare capacity exists for increases later.

4. Schedule Progress

Schedule progress measurement includes the estimated progress, measured as the

ratio of the planned to the actual work done on the schedule. This metric can measure

productivity and progress. For example, this measurement can show if the software

development is meeting the scheduled requirements as laid out in the contract. This metric

uses the standard cost-reporting data on software work packages completed under MIL-

STD 2167A.

5. Requirement and Design Progress

The meL.t_, for requirement and design progress can track requirement

documentation process. The measurement would detail the number of requirements,

number of requirements documented, and the number of requirements scheduled to be

documented. This metric is used in the specification and detailed design phases. This metric

is another measure of progress and productivity.

6. Testing Progress/Quality

The measurement of progress and quality includes the planned and actual

configuration items and completed system tests; number of new problem reports and

opened or unresolved problem reports. These metrics can measure the progress in

completing testing, the number of potential bugs found, and the speed of fixing them. These

metrics can also estimate software quality, and the time needed to complete the tests.

7. Incremental Release Content

This metric, compares the estimated and actual release date with the estimated

and actual components in each release. The metric measures the progress of a software

project in relation of the estimated module releases, with the actual module releases. For

example, if the number of actual modules increases for a planned release, is this as a result

3

of changing requirements or coding is ahead of schedule? Conversely, if the number of

actual modules decreases for a planned release, is this a result of pressure to meet the

published schedule dates, and coding is behind schedule?

8. Complexity

The most common design complexity metric is Cyclomatic complexity [NAS 90].

This metric indicates which parts of the software system that may be error prone or hard to

maintain. For example, a software developer may use cyclomatic complexity on a piece of

software such that, once a software module exceeds a level the module is reworked to bring

the complexity level down if there is sufficient time and budget for the rework. Cyclomatic

complexity may also provide a relative indication of where testing will be difficult, which

aids in planning test efforts.

B. USERS OF SOFTWARE METRICS

Program managers and software developers are the main users of software metrics.

Users can benefit from the use of software measurement throughout a software project.

Program managers use software metrics to help them estimate project costs, schedules

and performance. A good estimate is the cornerstone of a successful project. To have a

successful program, the manager needs to know how much money to spend, (cost), how

much time to finish the program (schedule), and what the final specifications are

(performance). When dealing with software projects, the manager needs to know how long

it is going to take to develop the final product and at what cost. To do this effectively, a

good, accurate, estimate early in the program's life cycle is needed. The estimate of the

project size will affect the cost, schedule, and performance qualities of the project. For

instance, if the project is estimated to have the functionality of A, B, and C; the project must

be completed in one year, the project is estimated to have 100K lines of code; with five

programmers; and no more than $500K. Management needs to ensure that resources are

employed to complete the project on time or to make a decision to trade-off one resource

for another. Management will also need to know during the life of the project the status of

4

the constraints placed on this project - is it falling behind or ahead of schedule, exceeding

or within its budget.

Software metrics can help decide where the software project is in relation to the project

completion and alert project managers, maintainers, testers of future problems, delays, and

increased costs. During a large multi-year software development, there are usually only a

few major milestones that must be met by the software developer. The major milestones do

not allow for adequate management visibility of the entire process for a day to day or week

to week development tracking. A lot happens between these milestones, and a more

detailed picture is needed on a more frequent basis. In order for management to track the

progress of a project, they will need to know a frequent basis, day-to-day, week-to-week,

or month-to-month how the project is progressing along the planned route. Any deviations

from this planned route will cost the development some precious resources down the line,

either time or money or schedule. The sooner management can make an informed decision,

the better. A good set of software metrics provides this information. However, clear

guidance must be given on what data to collect and made available to users.

The use of metrics is still in the development stages with no existing standards to what

to count or report. Reports within an organization may fluctuate from project to project,

depending on the importance placed on metrics. This lack of standardization interferes with

comparing of lessons learned from one project to another project.

Software projects, like any other projects contain a certain amount of risk. The use of

inaccurate or paradoxical metrics increases that risk. The factors that contribute to this

include lack of: standardization for languages; rules to compare across languages, such as

Ada and C; accurate size estimations during the requirements phase, when this information

is needed.

Software metrics are not a panacea, but merely a tool that can deliver response to

management and the technical staff on various aspects of a software project. For example,

when using a complexity metric, once a module has exceeded a certain predetermined

5

threshold, then remedial action might bring the complexity of the module back within

allowed limits by dividing the code into smaller less complex modules. [SLI 87]

C. WHY COUNTERS AT ALL?

The use of size metrics (Source lines of code (SLOC) and logical source statements)

include tracking, planning, budgeting, maintaining and estimating software projects.

Software developers also use software size metrics to plan, control, and improve their

product. [SEI-B 92]

1. Automated versus Manual Counters

Performing software measurements with a purely manual technique is expensive

because of the extra-ordinary amount of time involved even for the simplest of

measurements. In addition, performing any function manually may introduce errors

because humans are fallible. To overcome these problems and provide the flexibility,

consistency and reliability the process of making these measurements must be automated.

2. Counting versus Reporting versus Tracking

The smart software developer will get the most out of the information available

from metrics. The metric numbers are the result of performing some measurements against

a piece of software. These numbers represent the counting portion of the metric. The results

will differ when the rules are changed. The displays of the outputs from the count have to

deal with the reporting aspect of the metrics. The user requesting, the information need to

be able to get the infoir,,tion in a form that he is expecting, and one that will be of use.

Tracking refers to the ability to trace the progress of the software development project

completely. During tracking, the man iger can decide if the project is meeting the schedule.

The Department of Defense (DoD) is trying to deal with the effects nf a reduced

budget. As DoD rightsize itself, organizations are going to have to do more with less. The

software community will be no different. DoD has set up some long term goals that include:

reducing the life-cycle costs by a factor of two; reducing software problems rates by a

6

factor of ten; achieving new levels of DoD mission capability and interoperability via

software.

These goals imply that DoD can apply some measure of where they are now,

against where they are going, to know if they ever get there. However, no baseline has been

set to measure progress toward these goals. DoD has teamed up with the Software

Engineering Institute (SEI) to provide a part of the baseline that will be necessary to meet

the above goals by the year 2000. Software metrics will provide the measurement from the

baseline of the software development progress. [SEI-A 92]

SEI's task is to provide a core set of measurements for use within DoD software

projects. In 1992, SEI published several frameworks accomplishing the goal. DoD agencies

can use these frameworks to plan, monitor, and manage its software projects, both internal

and contracted. These SET framework documents outline how to: define what is to be

measured (set a standard), by using a checklist; and to express clearly the results of those

measurements, (provide unambiguous results) consistently.

The SEI' frameworks help management to answer several key questions. How big

is the job? Can our staffs meet the added commitments? Can we deliver on schedule? How

reliable is our project? Will the project meet fielding deadlines? Will the project meet the

required specs? Will the project need more time and effort due too unplanned releases to

fix detected bugs? The answers to these questions will help the software developer ensure

the proper mix of personnel are available for the project and give an idea of where the

project is in relation to the baseline.

SEI has concentrated on defining unambiguous measures for size, effort,

schedule, and quality. It is SEI's objective to provide tools the project manager can use

concerning project planning, project management and process improvement. Consistent

measurements are crucial to the project manager.

7

D. PROBLEM DESCRIPTION

Tools to count lines of code have been around for a long time. However, these tools

are not standardized, automated and can lead to misleading and ambiguous interpretations

of the size of software modules, especially when the person performing the measurement

does not use the method or rules expected by the person requesting the measurement.

One question addressed by this research looks at the ability to automate the SEI

framework for Software Size Measurement. Introducing automation to most processes

reduces the time required to complete the process since machines are inherently faster than

man. If automating the SEI framework for Software Size Measurement provides more

benefits compared to costs, then it may be of value to carry out the framework.

Another question addressed by this research pertains to the ability to provide the

standardization of the SEI framework for Software Size Measurement. Introducing

standardization to the measurement process will provide unambiguous, clear and consistent

reports, that management can use to track their software development process.

A final question addressed by this research looks at how to provide the flexibility

outlined in the SEI framework for Software Size Measurement. The SEI framework is

designed to allow over eighty different values, while still maintaining the consistency and

reliability of the counting tool.

E. OVERVIEW OF THESIS

Chapter II provides background information related to this thesis. Topics covered

include an overview of the SEI frameworks on size, effort and schedule, and quality.

Chapter III discusses the tool design. This includes each of the major parts of the tool, TAE,

Ayacc, and Aflex, giving an overview, purpose and interaction with the other parts. Chapter

IV describes how to use the tool. Chapter V provides a summary of conclusions and further

work. Appendix A contains a user manual. Appendix B list the source code for the tool.

Appendix C lists some sample inputs and outputs.

8

II. SEI FRAMEWORK

A. DEFINITION OF FRAMEWORK

A framework is "a structure to hold together or support something" [WAR 90]. SEI

has published three frameworks in the area of software measurement. The three

frameworks are concerned with size, effort and schedule, and quality. These frameworks

are the result of years of work by several groups of software professionals. [SEI-A 92]

SEI does not propose that these frameworks as standards set in concrete, but to use

them as a basis for collecting information concerning the development of software. These

frameworks provide measurements that will lead to unambiguous and mutually exclusive

reports. To achieve this, each SEI framework uses two criteria. The first is communication.

A measurement is not useful if the report user does not understand the results, or the rules

used to get them. The report needs to convey what was measured and what was not

measured. The second criterion is repeatability. The measurement, when applied by others,

should have the same results. Consistent report results provide confidence to the users.

Users will not use a measurement that does not provide stable results. [SEI-A 92]

Each framework proposed by SEI has some common structures. They all use

checklists and recording forms. The checklists provide the repeatability mechanism.

Having a checklist filled out and on hand, any person performing the measurement knows

what is to be measured. The recording forms provide this communication mechanism. The

person reading the recording forms can see what was measured and what was not. [SEI-A

92]

Developers of software projects are looking at ways to help manage the entire software

process as the software projects get larger and more complicated. The software developer

goal is to produce code that is on time, reliable, and performs as the users requested.

Software developers can add these frameworks to their toolbox and use them during the life

cycle of a project. The use of measurements can help the software developer produce

quality code on time and under budget. [SEI-A 92]

9

A problem with previous measurement was not doing the measurement, but

communicating the result so they have meaning to the user. Important parts of the

frameworks are the attributes of the measurement.

1. Attributes

An attribute is "something seen as belonging to or representing someone or

something." [WAR 90] The attributes associated with the SEI frameworks provide insight,

definition and characteristic of the software project being measured. [SEI-A 92]

The SEI checklist identifies the attributes that need to be measured to ensure the

two criteria of communications and repeatability. The checklist shows what attributes are

included or excluded for each report. To ensure that measurements are accurate and non-

overlapping, SEI has carefully chosen the attributes so that they are orthogonal in nature.

The attributes are the broad categories of the frameworks. Each attribute is made up of two

or more values to provide a finer measurement. [SEI-A 92]

2. Values

The values for each attribute were chosen so that they are mutually exclusive of

each other. The reason for this is to help eliminate misunderstandings that can result if the

values for any one attribute are overlapping. Values are listed on the checklist form. The

measurement user then fills out the form and either chooses each value as included in the

measurement, or excludes the value from the measurement. Statement type is one attribute

within the SEI framework for Size. The listed values for this attribute are: executable,

declarations, comments on their own line, comments on line with source code, comments

that are banners or nonblank spacers, empty comments and blank lines. This is not an

exclusive list, users can add or change as they see fit. However, users need to ensure that

changes or modifications to the values keep the mutually exclusive property. Changes that

violate the mutual exclusion property could result in possible double counting of some

values. [SEI-A 92]

10

3. Reports

After the checklist has been filled out, and the measurement performed, the next

step is to express the results of the measurement in a way that can be understood and read

by the people who use them. Each of the three frameworks that SEI published has an

example of some predefined initial reports and the associated value settings. The reports for

the SEI framework on Size are discussed in more detail in chapter three. A more detailed

discussion of reports for the other two frameworks can be found in the Software

Engineering Institute reports.

B. APPLICATIONS OF FRAMEWORK

1. Software Size Measurement:

The SEI framework for size provides two independent templates that can measure

the size of software, physical source lines and logical source statements. The use of size

measurements can be used by software project managers to plan, maintain, track, and

estimate software projects. [SEI-B 921

Another goal of SEI was to reduce ambiguities and misunderstandings in the

different reports of software size. Without using a process similar to the SEI framework,

reports containing statements like "our activity produced over 500K source lines of code"

would be meaningless to everybody except the person performing the count. The reason

this count is unclear is the fact that the statement does not ten the reader what wa- counted,

what was not counted, rules used to perform the count, if the count included all software

modules, or just newly developed modules. The user of the reports needs to understand the

rules and methods used to perform the counting operations. SEr's framework on size

provides for complete and explicitly defined measures for both physical source lines of

code and logical source statements. [SEI-A 92]

The framework also provides for the ability to ensuring that the report received

this month is consistent with the report received last month and the one that will be received

a year from now. This consistency will allow users to gain insight into project trends, to

11

compare one project against others, and ultimately to make necessary corrections if needed

in the total software development process. [SEI-A 92]

2. Software Effort and Scbedule Measurement:

The framework for effort and schedule provides a starting point for building

unambiguous measures that will help manage, software projects and processes. The SEO

reports are an approach to gather information for defining and recording staff-hours and

related schedule information. There are many reasons for collecting and using data for

staff-hours, three of which are: to pay individuals (payable hours), to charge for hourly

services (billable hours), and to use in productivity and quality studies (actual hours). [SEI-

A 92]

3. Software Quality Measurement:

As with the other SEI frameworks, the goal of the quality framework is to provide

the user the ability to obtain clear, non-overlapping and repeatable reports of software

quality. The framework includes: the relationship of the discovery, reporting, and

measurement of problems and defects; a set of measurable, orthogonal attributes for

making the measurement descriptions exact and unambiguous; checklists for creating

unambiguous and explicit definitions or specifications of software problem and defect

measurements; examples of how to use the checklists to construct measurement

specifications; and examples of measurements using various attributes of software problem

reports and defects. The reports of software quality can help the user to estimate, plan, and

track, the software development process. [SEI-D 92]

C. AUTOMATION OF SIZE MEASURE

There are several reasons for selecting the size measurement as the measurement to

automate first. They are:

"* Most of the historical data for cost models and project estimating are based
on physical measures of source code size.

"* Size measurements are easier to define and use.

12

D. PREVIOUS SIZE CALCULATORS

There are two size calculators that were looked at as examples of tools to count source

line of code. One tool was a static prototype of the SEI framework, on DOS a platform. The

other tool was a mature DOS product for Pascal programs, to calculate non-SEI size

measures and other metrics.

1. DOS Version of the SEI Framework on Size

The version tested was a prototype of the SEI framework on size. The tool was

not completely functional. The tool as tested only carried out the attribute's statement type

and origin. The other attributes were scheduled to be set up at a later release date. The tool

also did not allow for the operator to change the settings of the values for the two attributes

supported. The settings for both attributes were set to "included." [CSC 921

AdaSAGE provides the user interface to the tool. The interface was a copy of the

checklist form provided by the SEI framework. The tool requires the user to type in the

name of a source file. The source file will contain the names of Ada modules. The tool will

write the results of the measurement to a file. [CSC 92]

A session at a recent software engineering conference included descriptions of

tools developed in parallel with this thesis, but these were unavailable for examination.

[SEI 931

2. PC-Metric for Pascal

The PC-Metric for Pascal is a DOS-based tool that provides three separate

measurement reports on Pascal programs. The three reports are the complexity report, the

exception report and the error report. As a part of these reports, the PC-Metric for Pascal

also provides information on the number of lines of code contained in the source file.

However, the lines of code are just that, the total number of lines of Pascal code. No

information on the statement types that were counted, how the code was produced, the

origin of the code and so on. The method for obtaining the line count was to count the total

number of lines in the source file. [SLI 87]

13

However, the PC-Metric for Pascal does provide some insight into the

complexity, the exception and errors of the Pascal source file. Also included with the

documentation, is a tutorial on software metrics. The tutorial covers how to develop

metrics, metrics' accuracy, specific metrics and how to use metrics in software

development. [SLI 87]

E. SUMMARY

This chapter has discussed the SEI framework, the building blocks of the framework,

how the frameworks can be applied, and examples of some tools that provide physical

source lines of code measurements. The SEI framework is designed to provide a flexible,

automated measurement tool based on consistency and reliability. The two tools

summarized above do not provide the flexibility of the SEI framework. The Automated

Ada Physical Source Line Counter provides a flexible, automated tool that provides

consistent and reliable results.

14

III. TOOL DESIGN

A. ATI'RIBUTES SUPPORTED

The SEI framework on size details nine different attributes that are orthogonal in

nature. The Automated Ada Source Line Counter implements six of the nine attributes. The

following sections discuss the attributes in detail. (See Figure 1)

SEI Attributes

* Statement type
* How Produced
* Origin
* Usage
* Delivery
* Development Status
Functionality
Replications

** Languages

* Implemented in this tool
** Ada is the only language

implemented

Figure I SEI Attributes supported and not supported

1. Statement Type

The statement type attribute distinguishes the source statements according to the

function they perform. There are five basic types of statements, they are: executable,

declarations, compiler directives, comments, and blank lines. Comments are further

subdivided into: comments on their own lines, comments on lines by themselves, banner

and nonblank spacers, and empty comments. The value of this attribute is determined for

each physical source line of code during the parsing of the input files. [SEI-B 92]

15

2. How Produced

This attribute is used to identify the process by which the individual line of code

was produced. This attribute is divided into six values, that include: programmed,

generated with source code generators, converted with automated translators, copied or

reused without change, modified, and removed. The value of this attribute is determined by

special comments in the source code. The default value for this attribute is 'programmed'.

Special comments are discussed in greater detail in PARSER on page 32. [SEI-B 92]

3. Origin

The attribute origin tracks the prior life, if any, of the product software. The origin

attribute is divided into eleven values. The values are the following: new work; a previous

version, build or release; commercial, off-the-shelf software (COTS), other than libraries;

government furnished software (GFS), other than reuse libraries; another product; a

vendor-supplied language support library (unmodified); a vendor-supplied operating

system or utility (unmodified); a local or modified language support library or operating

system; other commercial library; a reuse library (software designed for reuse); and other

software component or library. The value of this attribute is determined by special

comments in the source code. The default value for this attribute is 'new work'. [SEI-B 92]

4. Usage

The usage attribute makes the distinction of code developed as part of the

software project and code not developed for the software project. The attribute usage is

divided into the values in or as part of the primary product and external to or in support of

the primary product. Code that is developed as part of the software project could have

different costs associated with the development, maintenance, and testing of the code

versus code that is developed for support of the code. For example, test drivers are not

maintained or documented at the same level as the primary code. Distinguishing the

differences is important for reports of productivity, quality, effort, and progress. The value

16

of this attribute is determined by special comments in the source code. The default value

for this attribute is 'in or as part of the primary product'. [SEI-B 92]

5. Delivery

The delivery attribute distinguish between the form and destination of the source

code. In this tool, delivery means delivered to the organization that will maintain the source

code. The delivery attribute is divided into four values, that include: delivered as source;

delivered in compiled or executable form, but not as source; under configuration control;

and not under configuration control. For reports A through E, this value is set to 'delivered

as source'. For report F, the tool user has the option to pick one of the four values of this

attribute. The default value for report F is 'delivered as source'. [SEI-B 92]

6. Development Status

The development status attribute is used to mark the progress of the source code

from the design phase to a finished product. The count of the various values of development

status can provide insight into the development and integration workload yet to be

accomplished. The attribute development status is divided into eight values, which are:

estimated or planned; designed; coded; unit tests completed; integrated into components;

test readiness review completed; software (CSCI) test completed; and system test

completed. The value for this attribute is determined by special comments in the source

code. The default value for this attribute is 'system tests completed'. [SEI-B 92]

7. Clarifications (General and Ada Specific)

The clarification attributes, both the general and Ada specific, aid in explaining

the rules used to define the differences among the eight values of the attribute statement

type. The general clarifications are for any language. The Ada specific clarifications deal

only with Ada programming language issues. Each general and Ada specific clarification

is associated with a unique statement type attribute value. For example, the default setting

for counting a null statement, is to count the null statement as an executable. The

17

clarifications for reports A through E can not be changed. In report F, the user may change

the clarifications rules from one of the attribute statement type values to another. [SEI-B

92]

B. ATTRIBUTES NOT SUPPORTED

There are two attributes of the SEI checklist that were not implemented in this tool.

They are functionality and replications, which are discussed briefly in the following

paragraphs.

1. Functionality

The attribute functionality deals with whether or not a line of source code is a

functional part of the code or not. The attribute functionality is divided into two parts

operative and inoperative. Inoperative is further divided into inoperative but functional

(intentional dead code, reactivated for special purposes) and nonfunctional (unintentionally

present). [SEI-B 92]

2. Replications

The attribute replication describes how to account for a software project's master

source statements from its copies. There are four values for the attribute replications, which

are: master source statements (originals); physical replicates of master statements, stored

in the master code; copies inserted, instantiated, or expanded when compiling or linking;

and postproduction replicates - as in distributed, redundant, or reparameterized systems.

[SEI-B 92] This attribute was not implemented in this tool, although combinations of the

Ada Physical Source Line Counter with a differencing tool such as the unix DIFF might be

useful [SUN 90].

C. DEFAULT REPORTS/OUTPUT

There are a total of six reports that this tool can generate. Five of the reports are defined

by the SEI framework on Size. A sixth report is provided to allow the user to create, modify,

18

and use as they see fit. Appendix C contains examples of each reports output. Each report

will be briefly discussed in the following paragraphs.

1. Report A

Report A is the basic definition for counting physical source lines of code. This

report will give us information on the total noncomment and nonblank physical source lines

of code. Report A explicitly spells out the rules to be used when comments are on the same

lines as other source statements. The report also addresses all origins, stages of

development and code that is integral to the product and external to the product, and forms

of code production. Reports B through F build upon this basic definition. See Figure 2 for

a written specification for this report. No data arrays are included in this report. [SEI-B 92)IFor the programming language Ada, measure and record these values:
Total lines
Individual totals for all values included

Figure 2 Written Description for Report A

2. Report B

Report B provides the capability for project tracking. Report B provides this

information through the expanded use of the development status attribute. For example,

report B will provide the progress of the software project through each of the production

processes, the how produced attribute in comparison to the stage of development and the

development status attribute. This is accomplished through periodic measurements using

report B and comparing the results of the two-dimensional array. See Figure 3 for a written

specification for t. report. Appendix C contains an example of report B and the associated

two-dimensional an-ay. [SEI-B 92]

3. Report C

Report C is designed for the end of project data gathering. The results of this

report can be used to improve future estimates and planning for future projects. This data

19

For the programming language Ada. measure and record these values:
Total lines
Individual totals for all values included
A two-dimensional amy showing the number of lines

in each development status
for each production class

Figure 3 Written description for report B
would be collected at the end to help fine tune existing estimates and cost models and for

the estimation of future software projects. Report C adds to report A by including the values

of comments on their own lines and comments on lines with source code for the statement

type attribute, the value removed for the how produced attribute, and a two-dimensional

array, six by eight, containing the attributes statement type and how produced. See Figure

4 for a written specification for this report. [SEI-B 92]

For the programming language Ada, measure and record these values:
Total lines
Individual totals for all values included
A two-dimensional array showing the number of lines

in each statement type
for each production class

Figure 4 Written description for report C

4. Report D

This report measures reuse of software code. The data elements included in this

report will help the user to quantify and interpret the amount of software reuse. This report

can also be used to measure productivity and quality. Report D, in addition to the

information for report A, asks for a two-dimensional array, six by eleven, containing the

attributes of how produced and origin, and includes the value removed for the attribute how

produced. See Figure 5 for a written specification for this report. [SEI-B 92]

S. Report E

Report E is the combination of report C and D. Combining the two reports can

save resources including time, money, and paper. However, the trade-off for this report is

20

For the programming language Ada. measure and record these values:
Total lines

A two-dimensional array showing the number of lines
in each production class
for each origin

Figure 5 Written description for report D

the creation of a three-dimensional array. Three-dimensional arrays are harder to

communicate to the user, especially using two-dimensional medians such as monitors and

paper. Report C generated one two-dimensional array of six by eight. Report D generated

one two-dimensional array of six by eleven. Report E on the other hand, generates eleven

two-dimensional reports of six by eight. The higher number of arrays are required to

facilitate the display of information that can be displayed on a terminal, written to an ASCII

file, or printed on paper. A three-dimensional array is displayed by taking the third

dimersion of size eleven and creating one two-dimensional array of six by eight from the

other two dimensions. See Figure 6 for a written specification for this report. [SEI-B 92]

For the programming language Ada, measure and record these values:
Total lines
A three-imensional array showing the number of lines

in each production class
for each origin
in each statement type

Figure 6 Written description for report E

D. USER-DEFINED REPORTS/OUTPUT

The tool enables the user the ability to create any unique report. This report is left up

to the user of the tool to design and create according to requirements. The initial settings

are the same as report A. For instance, the user would use report F to assign a different

priority to the values of the statement type attribute.

21

E. DATA STRUCTURES

There are several key data structures used throughout the tool. The data structures are

declared in the Transportable Applications Environment (TAE) global package because of

the need for TAE generated Ada code to have the ability to set key variables used for every

report and to change, as required, the user defined report.

The key elements of the data structure include: variables used for every report; the size

attributes declared as enumerated types; one five-dimensional array to hold the source line

count per reports; one one-dimension array to track the precedence levels of the statement

type attribute; one two-dimensional array that maps the eight different statement type

values to two boolean variables to track statements on lines; a record structure containing

five fields, one field for each of the five dimensions and a record that contains all of the

supported attribute values.

Several of these different data structures are repeated, one instance of each data

structure for each possible report. Having the multiple instances of the data structure allows

for up to six different reports to be generated at the same time, even though the Ada input

files are only parsed once. A trade-off was made in favor of time to make repeated runs of

the tool versus the extra storage space needed to generate all six reports during one run. A

detailed discussion of each key data structure follows.

1. Variables used for every report

Every time that the Automated Ada Physical Source Line Counter is invoked,

there are two pieces of information that must be entered by the user for the tool to run

properly. The two pieces of information are the names of the input and out files. There are

two other pieces of information that are not mandatory, but will help in the tracking of the

different report versions. The name of the person requesting the information and the name

of the report are non-mandatory.

The input file is an ASCII file that contains the names Ada source file (s) to be

processed by this tool. Even though there exist a cost in time to generate the file with all the

22

filenames, the benefits of this approach outweigh the cost. (See Figure 7) The output file

Input filenanme Filelist
Ada. sourcfM_ L~a
Adasorefik-_2.a

SFFilelist Ada-sowrce-fileN•

Figure 7 Relationship of input file name and Ada source files to be measured

name is used to create an ASCII file containing the reports requested by the user. At this

time there ia no default name used by the tool.

2. Size Attributes

The five attributes of the SEI framework that are measured in this tool have each

been declared as enumerated types. The values for each attribute enumerated type are the

values for that attribute as defined in the SEI framework for size checklist. Using

enumerated types facilitated the use of the Ada language attributes associated with

enumerated types. (See Figure 8).

type STMTTYPE is (EXECUTABLE, DECLARATIONS ,
COMPILERDIRECTIVES,
CMTS_ON_OWN_LINE,
CMTS_WITH_SRCCODE,
BANNERSNONBLANKSPACERS,
BLANKCOMMENTS, BLANKLINES);

Figure 8 Attribute Statement Type values declared as an enumerated type

23

3. Five Dimensional Arrays

To keep track of the five orthogonal attributes a five dimensional array was

created, one dimension corresponding to each attribute. This was followed by the creation

of six instances of the five dimensional array. Each instance of the five dimensional array

is associated to one of the six reports. Each line counted of the Ada source files has one of

the values of each attribute associated with it. The Automated Ada Physical Source Line

Counter uses the five-dimensional array to track this association. To calculate the

individual totals for each value, the five-dimensional array is traversed one dimension at a

time. The tool also uses the five-dimensional array when computing the requested two and

three dimensional arrays for reports A through E. (See Figure 9)

type COUNT-ARRAY TYPE is any (STMT TYPE,
HOW-PRODUCED,
ORGIN,
USAGE,
DEVELOPMENT STATUS) of natural;

Figure 9 Declaration of five dimensional array

4. Priority Arrays

The priority arrays are checked each time the lexical analyzer recognizes the end

of the line marker. At this time, the highest priority of the statement type values found on

the line is determined. When the statement with the highest priority is marked as

"included", the line statement type attribute is set to this value.

For the five default reports A through E, the precedence for each report is the

same and can not change. For the user defined report F, the precedence for each value of

the statement type can be set according to the user's requirement. The user sets the

precedence levels for report F inside of the user interface. (See Figure 10)

I type PRIORrIYTYPEJARRAY is array (1..8) of STMTJTYPE;

FIgure 10 Declaration of Priority type array to track precedence levels

24

5. Flap Array

A two-dimensional array was created to determine when a particular statement

type value has been recognized on a line. The first dimension of the array is the range of

the enumerated statement type. The second dimension of the array contains two boolean

variables. (See Figure 11) One of the boolean values is set to true when the start of a

[type FLAGSTYPE ARRAY is array (STMTTYPE, 1 .. 2) of boolean;

Figure U Declaration of FLAGSTYPEARRAY

language construct is recognized by the parser. The second boolean value is set to true when

the end of a language construct is recognized by the parser. (See Figure 12) When the

lexical analyzer recognizes the end of line, the flags._array is traversed from highest to

lowest precedence. The statement type value recognized with the highest precedence is

then counted, if required.

setuexecstart: IFLAGSARRAY(STMTTYPE'vaI(O), 1): true;;

set-exec._end: {FLAGSARRAY(STMTTYPE'val(O), 2):= true;);

Figure 12 Example of FLAGS TYPE-ARRAY values set to true

6. Current Settings Record

In order to track each of the five dimensions, the record structure

"currentsettings" was created. This record structure is used whenever a physical line of

code is counted. The respective currentsettings field is updated when the parser recognizes

either the language constructs associated with the statement type attribute or the special

comments for the other four attributes.

7. Checklist Variables

A record structure, record-flags, was created to track each attribute and its values.

There is one instance of recordflags for each report. The default values for reports A

25

through E are assigned when the package Global is elaborated. The default values for report

F are the same as the basic report A. The user specifies their own values for report F by

stepping through the user interface panels. See Appendix B for copy the global package

source code.

F. OVERVIEW

The Automated Ada Physical Source Line Counter, as its name suggests, is a tool that

will perform a count on Ada source files and generate reports of the total number of

physical source lines counted and individual totals of each value included for each report

requested. The tool consists of four parts diagramed in Figure 13.

Automated Ada Physical Source Line Counter

User Interface

Data

Report SrcueParser
Generator

Ada
Reports A-F Source f-ies

Figure 13 Overview of the Automated Ada Physical Source Line Counter

26

Te first part is the data structure. The data structure holds all of the default and user

set variables that are used by the other three parts of the tool. The default values are set for

reports A through E during elaboration. The user-specified values for report F are set by the

user via the user interface. The second component is the user interface. The user interface

allows the user to request either five default reports, or to create a report of their own. The

user interface was built using TAE, and based upon the SEI framework on size

checklists.[NAS 90] The next element of the tool is the parser. The parser was created using

two tools, Ayacc, and Aflex. Ayacc generates a parser, where Aflex generates a lexical

analyzer used by Ayacc. The parser created by Ayacc and Aflex is used to distinguish

between the different values of the statement type attribute, recognize special comments,

and at the end of every line determine how the line should be counted, if at all. Tae next

part is the report generator. This part performs the calculations that sum the individual and

aggregate totals and any two and three-dimensional arrays. In addition, each report that is

requested is generated and written to an ASCII file. Each part of the tool will be discussed

in greater detail in the following sections. A user manual for the tool is included in

Appendix A.

G. USER INTERFACE

The user interface provides a window type access that is an easy-to-use method to

request one or several pre-defined reports or to create an individualized report. Each of the

supported attributes is contained in its own panel or screen. The user interface is made up

of eleven panels. (See Figure 14)

The panels are made up of selection items, text items and labels. There are three types

of selection items. The types are push-button, checkboxes and radio buttons. The push-

button is used to connect one panel to another. The push-buttons are shaped like a rectangle.

The checkboxes are used whenever the user has the choice to pick more than one item. The

checkboxes are shaped like a square. For example the user can pick just one report, say A,

an or the user can pick all six reports, A through F. The radio buttons are used when the

27

user can pick only one of the items in the group. The radio-buttons are shaped like a

diamond. At least one item will always be picked. For example, if the user picks the value

blank lines to be included in report F, then the radio button for "Includes" will be

highlighted. The button for "Excludes" will change from highlighted to blank and vice

versa.

Each of the panels have default settings for push-buttons, radio-buttons and

checkboxes. Each default selection is highlighted. To change or add too the default

selection, the user must use the left mouse button. The default push-button can be selected

when the return key is pressed while the cursor is in that panel.

The push-buttons for each panel are displayed along the bottom. Two of these push-

buttons are common to each panel and will be discussed separately from each particular

panel. The first push-button is the "Quit" button. The other push-button is the "Help"

button. When the quit button is pressed, the quit panel is displayed over the top of the

current panel. The quit panel gives the uqtr the choice to quit the application, or to go back

to the panel that they were just on. When the help button is pressed, a help panel with

information particular to that panel will be displayed. When the user is finished with the

help screen, the help screen will disappear and the panel that initiated the help screen will

again be the active screen.

The first panel is an introduction panel. The introduction panel contains the name of

the tool, name of the author and three push-buttons displayed along the bottom. Beside the

quit and help push-buttons, the other push-button is the "Next screen" button. The next

screen button will make the introduction panel disappear, and bring up the second panel.

The next screen push-button is the default push-button for the introduction panel.

The second panel is where the user will enter the mandatory information for the tool

to operate. The second panel contains four string keyin areas, a group of six checkboxes

and four push-buttons. The string keyin areas are for the report name, file list, requestor

name and output file name, respectively. The user enters the appropriate information by

placing the cursor over the window and type in the appropriate information. Six checkboxes

28

of the attribute statement type. TAE will ensure that the precedence entered is within the

range of one through eight. However, if the user does not ensure that each precedence value

is unique, the results for report F may not be accurate.

The eight and ninth panels are for the general and Ada specific clarifications panels

respectively. These two panels are similar to panel three, the difference being the number

of radio-buttons. There are a total of thirteen general clarifications and six Ada specific

clarifications. Each clarification is associated with one of the values of the attribute

statement type.

The tenth ,anel is the generate report panel. This panel has two push-buttons displayed

along the bottom of the panel, they are labeled cancel and generate report. The generate

report is the default button. The cancel button will make the generate report panel

disappear. The user must then use the mouse to click on the icon of the previous panel. In

addition to the push-buttons, this panel displays a text message explaining the different

options available to the user.

The last panel is the quit panel. This panel also has two push-buttons displayed along

the bottom of the panel, they are labeled quit uaQ, cancel. The quit button is the default

button. When the quit button is selected, the panel will disappear and the tool will

terminate. When the cancel button is selected, the quit panel disappears leaving the

previous panel as the active panel. In addition to the push-buttons, there is a text area that

displays the options to the user. This is provided in lieu of a help button.

30

represent six different reports that can be generated by this tool. Any one or all of the

checkboxes may be selected. Report A is the default selection. In addition to the quit and

help push-button, the second panel also has displayed along the bottom a "Generate

Report" push-button and a "Specify Custom Report" push-button. When the generate

report button is pressed, the second panel will disappear and the generate report panel will

appear on the screen. When the specify custom report push-button is selected, the second

panel disappears, and activates the third panel. The generate report push-button is the

default push-button for the second panel.

The third through the seventh panels contain the attributes of the SEI checklist, one

attribute per panel. There are five push-buttons on each of these panels. The first two push-

buttons are the quit and help buttons. Another push-button is the "Previous Screen" push-

button. When the previous screen button is pressed, the current panel disappears, and

activates the previous panel. The next push-button is labeled "Next Screen". When pressed,

the current panel will disappear, activating the next panel in the sequence. The last push-

button is the generate report button. When this button is pressed it will make the current

panel disappear and activate the generate report panel. The generate report panel is the

default button.

Along the top right comer in panels three through seven are two radio-buttons

displayed, one above the other. These radio-buttons allow the user to specify that in

addition to the individual totals, this attribute will be included in a multi-dimension array

at the end of the normal report format. When this choice is selected, all of the attributes

selected as such (must have at least two) will be displayed as two or three dimensional

arrays at the end of report F. When more than three attributes are selected, then all

combinations of N choose three will be displayed at the end of report F, where N will be

either four or five. The other major part of panels three through seven are the radio-buttons

that correspond to the values for each attribute. All of the radio-buttons are the same, either

the include button is highlighted or the exclude button is highlighted. Panel three also has

eight integer keyin windows. Each integer keyin window corresponds to one of the values

29

Introduction
Panel

Second
Panel

Statement type

Quit Generate
Application Attribute Report

Panel How Produced Panel

Attribute

SAttribute

Usage/Delivery

Attribute
Development

Status

Clarifi 'tons
(General)

Clarifications

(Ada specific)

Figure 14 Overview of User interface

31

H. PARSER

The Automated Ada Physical Source Line Counter uses the generated parser from

Ayacc [TAB 88] to differentiate between executable, declarations and compiler directives.

These are three of the eight values associated with the attribute statement type. To do this,

the specification file for Ayacc, ada.y, was slightly modified.

The differences between the three attributes were used to set flags when a particular

language cons, ict was recognized. To set these flags, several nonterminals were added to

ada.y. The purpose of these nonterminals was to have the parser execute the associated Ada

code. (See Figure 15)

set execstart: IFLAGSARRAY(STMTTYPE'val(O), 1) := true; ;

set._exec..end: {FLAGS_ARRAY(STMT_TYPE'val(0).
2) := true; ; I

Figure 15 Example of Ada code executed inside of Ayacc

The Automated Ada Physical Source Line Counter uses the lexical analyzer generated

by Aflex [SEL 90] for several purposes. The primary reason is to provide the lexical

analyzer function required by Avacc. This tool also uses Aflex to find all occurrences of

each type of comment and blank lines in the Ada source files. (See Figure 16)

-- Checking for blank lines
A[^]*\n (ECHO;

FLAGSARRAY (STMTTYPE'VAL (7), 1) := TRUE;
ADDTOARRAY;
linenum; }

Figure 16 Example of rule to find blank lines

This tool also uses the lexical analyzer to recognize certain Ada source statements/

fragments in certain situations. These situations have been derived from the clarifications

code (general and Ada specific). For example, rules were added to the Aflex specifications

file which will find when one of the following occurs: an "elsif on line by itself; an "else"

on line by itself; a "then" on line by itself; or "others" on line by itself. (See Figure 17)

32

--- Looking foran elsif on a line by itself

A~j]*"ejsiji]*\n (ECHO; ENMR(Z);

if COUNTCLARIFICATION (GLOBAL.RECORDFLAG$_F.PANELIOLINlE_I 1) then

FLAGSARRAY (STMIrTYPE'val (0), 1):= TRUE;

FLAGSARRAY (STMT_TYPE'val (0), 2):= TRUE;

ADD_TOARRAY;

end if-

linenum;

return(ELSIFJTOKEN);)

-- Looking for an "else" on a line by itself

A[N]*"else"[N]*n I ECHO; ENTER(Z);

if COUNTCLARIFICATION (GLOBAL.RECORDJFLAGSJ.PANELIO.LINE10) then

FLAGSARRAY (STMTTYPE'val (0), 1):= TRUE;

FLAGSARRAY (STMTTYPE'val (0), 2):= TRUE;

ADDTOARRAY;

end if;

return(ELSEToKEN);

linenum;

Figure 17 Example of rules added to Aflex

Finally, this tool uses the lexical analyzer from Aflex to recognize when any of the 27

special comments or flags have been used in the Ada source files. The special comments

are used to change the values of the four attributes How Produced, Origin, Usage, and

Development Status. When a special comment is found, Ada code is executed to set the

global flag SPECIALCOMMENT to true and to set the associated current_settings field

to the corresponding value. See Figure 18.

33

"-G.eaat•d" IECHO;

SPECIALCOMMENT:- TRUE;
CURRENTSETnINGS.SECOND-AITRIBUTE:= HOWPRODUCED'val (1)- I

FIgure 18 Example of code to recognize Special comments
When the lexical analyzer reaches the end of each line, the procedure

ADD_TOARRAY is called. This procedure determines which reports are active,

determines the highest priority of the statement type(s) recognized on the line, and

determines if this statement type value is included or excluded for the reports that are

active. If the statement type value is included, then the count for that report is incremented.

I. REPORT GENERATOR

The report generator provides for the generation of the reports after the Ada source

files have been parsed. The report generator is made up of several Ada packages. Two of

which will be discussed here. The main package is the report-package. The main functions

of this package are to determine which reports have been requested; perform the necessary

calculations of the values for each report: and to create and write to the output file the

reports requested. Several of the default reports require the generation and output of two or

three dimensional arrays. To accomplish this, a separate generic package was created.

All calculations of the two and three dimensional arrays are performed in the generic

package. The large number of multi-dimensional arrays that could occur in report F was the

driving factor for this package. In report F, the user can request data arrays for all five

attributes. This would require ten two-dimensional arrays of five choose two and ten three-

dimensional arrays of five choose three. To reduce the number of instantiations of the

generic package, the permutations of the two and three dimensional arrays were checked

and the duplicates were discarded. The generic package is instantiated fourteen times.

J. SUMMARY

This chapter discusses the attributes supported, attributes not supported, default

reports A through E, user defined report F, key data structures, user interface, parser and

34

the report generator. Together, these parts show that the SEI framework for Size can be

implemented into a fool providing flexibility and maintaining the two criteria of

communication and repeatability.

35

IV. TOOL USAGE

A. INTRODUCTION

This chapter describes what is needed to use the tool in section B. Some limitations of

the tool are discussed in section C. Section D goes over the command line invocation. An

extended example of an Ada source file is discussed in Section E. Finally, section F

discusses the reports generated as output from the extended example. Appendix A provides

a complete user manual for the tool.

B. REQUIREMENTS

1. Hardware

The Automated Ada Physical Source Line Counter requires the use of an Unix

workstation. The tool has successfully run on several SPARC compliant computers:

Solbourne Computer S4000, Sun SPARC station 10, Sun SPARC station 1 and Sun

SPARC station 2.

2. Software

The Automated Ada Physical Source Line Counter requires the use of "X-

windows" to operate. This tool has worked under Openwindows and Motif.

3. Input

The Automated Ada Physical Source Line Counter requires the entering of

several pieces of information to run correctly. The information that is required are the input

filename, output filename, name of person requesting report and name of the report. The

first two items are required information. The second two pieces of information are not

required, but suggested.

4. Legal Ada Syntax

The Automated Ada Physical Source Line Counter will only work with

syntactically correct Ada source files. In some instances, generated code will have

36

embedded special characters, such as (AL, page breaks for printing) that will cause a syntax

error in the parser. This particular error does not cause the tool to terminate, but there may

be some embedded characters that do. This prototype tool was built using version 1.0 of

Ayacc [TAB 88]. A newer and improved version of Ayacc was released after the tool was

built and offers some improvement in acceptance of Ada source files.

C. LIMITATIONS

1. Package Conflicts

The parser generated by the two tools Ayacc uses a grammar supplied be the user.

[TAB 88] For this tool, the grammar was the one supplied with Ayacc, but modified for

purposes of the tool. For the situation of recognizing either a package spec, a package body

or a generic package requires that for the proper counting of lines, the entire package spec,

package declaration or generic package declaration must be one line or the final count may

be incorrect.

i ~ genjinst :

PACKAGEJTOKEN IDENTIFJER ISTOKEN
NEW-TOKEN expanded_.n.gen-act.part. "'

I PROCEDUREident_IS_
NEWTOKEN expandedj n.gen_actpt. ';'

I FUNCTIONJOKEN designator IS-TOKEN
NEWLTOKEN expandedn .genact.part. ';';

Figure 19 Example of Ada.y input file to Ayacc

2. Coding Style

The Automated Ada Physical Source Line Counter counts physical source lines

of code and is based upon the SEI framework on size. [SEI-B 92] Different coding styles

can and will result in different results. For example, let's compare a short example of the

same code, but different writing styles. (See Figure 20) The total number of non-comment,

non-blank lines for version one would be two. However, the total for non-comment, non-

37

blank lines for the same exact code in version two results in a total of five. The use of a

pretty printer on the Ada source files prior to using the Automated Ada Physical Source

Line Counter will ensure consistent results for reports A through E.

Version One

procedure EXAMPLE_ONE is TEMPJINT : integer. 0; begin

FITEMPNT := TEMP_INT + I; end EXAMPLF._ONE;

Version Two

procedure EXAMPLETWO is

TEMP_INT: integer.= 0;

begin

TEMPJNT:= TEMPINT + 1;

end EXAMPLE TWO-,

Figure 20 Example of two different coding styles

D. COMMAND LINE INVOCATION

To start the Automated Ada Physical Source Line Counter, the user must either be in

the directory that contains the tool or have the directory containing the Automated Ada

Physical Source Line Counter in a valid path statement. In addition, the user must be

running in an X-windows environment (operating motif, for example). The tool is started

by any Unix program-execution procedure, but input and output may not be redirected.

E. EXTENDED EXAMPLE

1. Sample Application

The package TASKPACKAGE was created as part of an earlier class

programming project. This package just one of several packages created for a class project.

The overall objective of this project was to read in a file containing initial information about

38

a spaceship. The information included location in three-dimensional space, speed in each

of the three directions and remaining fuel. The object of the program was to be able to

accept input from a user via the keyboard at least every second and update the spaceships

parameters. This file was chosen for the extended example because it was of moderate

length, involved a number of different Ada statements in one file.

2. User Interface

In order to see the actual measurement results for an Ada source file performed

by this tool, the tool was invoked with the file EXAMPLEFILE. This file contained the

Ada package TASKPACKAGE. (See Figure 21) This section works through an example

taskpackage.a

I
Figure 21 Contents of EXAMPLE FILE

of how to use the tool and how the tool works. This example will result in the generation

of reports A through F. The tool is started as explained in section A. The user then places

the cursor inside of the introduction panel and presses the carriage return. The information

needed to properly run the tool is typed into the text keyin fields of panel number two. (See

Figure 22) The tool needs this information in order to know the correct input and output

files to open and create respectively. In addition, the name of the report and person

requesting report are entered. The next step is to choose the report(s) the tool are to

generate. (See Figure 23) Report A is already marked so no further action is required. For

reports B through F the corresponding checkbox must be marked by placing the cursor over

the checkbox and/or label for reports B through F and press the left mouse button. Since

report F has been chosen, the next step is to place the cursor over the push-button Specify

Custom report. This action will cause panel number two to disappear and activate panel

number three.

The changes for panel three include marking all of the radio-buttons for the

attribute statement type values as included and selecting the push-button generate report.

39

Report Name: Thesis example

Fie list: exampleI

Requestor Name: Kevn J. Walsh

Output File Name: example.out I

Figure 22 Example of text keyin fields

Rport e

* A: Basic I D: Rm Measurement

* B: Project Tracking E: Project Analysis (C+D)

i , Project Analysis * F: Qstom Report

Figure 23 Example of marked checkboxs for selecting reports A - F

40

(See Figure 24) Marking all of the radio-buttons as included customizes report F to

measure all lines of tLe input Ada source file as one of the eight possible statement type

values. When the push-button generate report is selected, panel number three will disappear

and the generate report panel appears. Since no mistakes have been made, the next step is

to select the push-button generate report. The generate report panel will disappear.

1.x ecutables: r17 Inbes 0 Ez

2. Noneecutables:

3. Declarations [L IU 0 •XM
4. Compiler Directives [J du EzW

5. Comments

6. Ontheirown E *w e 0
7. With SourceCode [&CWH

8. Banners/non blank ED *im I o ram

9. Blank (empty) comments Em a 0 E=W

10. Blanklin es EuIn 0 ev

Figure 24 Example of customizing report F

The user interface portion of the tool is now complete. Control of the tool now

passes over to the parser section. The file list file name entered in panel two is opened to

read the name(s) of the Ada source file(s). In this example, the file task-package.a is

opened and the parser starts to work. To explain how the parser section of the tool works,

41

an example of five of the possible values of the attribute 'statementtype' are discussed in

the following paragraphs.

3. Statement Processing

The flexibility of the Ada programing language made it necessary to create

several variables that this tool and in particular the parser uses to recognize the various

values of the attribute 'statement_type'. The Ada language allows more than one statement

type on a line and allows for executable statements, declarations and compiler directives to

extend over more than one line. To account for this, the parser needs to mark the start and

end of executable statements, declarations and compiler directives; and also to track when

either an executable statement or declaration or compiler directive extends beyond one line.

The variables are outlined by statement type and function in the figure below. (See Figure

25) The variables used for compiler directives is included in Figure 25, even though the

extended example does not include an example of a compiler directives, the function and

actions are similar to executable and declaration statements. The code used for the extended

example is in Figure 26.

Mark start of Mark end of Track multi-
statement statement line statement
variable variable variable

Executable execstart exec_end exec_level

Declaration dec_start dec_end declevel

Compiler Direc- pragma-start pragmaend pragmalevel
tives

Figure 25 Variables used during parsing of source files

a. Executable Statements

The parser processes the Ada source sequentially, reading in tokens via the

lexical &nalyzer. When the parser recognizes the keyword 'select' as starting an executable

statement, exec_start is set to true (See bubble 1 in Figure 26). When the lexical analyzer

reaches the end-of-line marker and the procedure addtoarray is called.

4?

Once inside add_to_array, the values of exec-start and execend are

evaluated to determine if the variable exec_level needs to be increased or decreased. In this

case, the variable exec_level is increased. The next check made is to determine if this line

of code is either a comment on its own line, a banner comment, an empty comment or a

blank line. For this line, all of these cases fail.

The next part of the code checks from the highest to the lowest precedence

statement type. In this case, the execution statement precedence is the highest, so the loop

is traversed only once. Since the exec_start flag is true, the currenLsettings.fist-attribute is

set to executable. Now the line is ready to be added to all applicable arrays.

The procedure determinewhich_array is called with the variable

currentsettings. This procedure will add this line to all applicable arrays as long as all five

values of the variable current_settings are valid for each report requested. In this case, all

six reports have been requested and the values for the variable current-settings are valid for

each report. The corresponding entry in the arrays for each report is increased by one. Once

the arrays are modified control is passed back to the parser.

For the second through the fourth line of this executable code, the variable

exec_level is greater than zero and the variables exec_start and exec_end are false. The

lexical analyzer reaches the end-of-line marker and checks the status of the flag settings.

Since the variable execlevel is greater than zero, then the variable execstart is set to true.

In this situation, the variable currenLsettings.firstLattribute is again set to executable, and

then processed as the first statement.

At the beginning of the last executable line is this example, exec_level is

gre-ater then zero. When the parser reaches the 'endselect', the end of the executable

statement recognized and the flag exec..end is set to true. Before the flags.array is checked,

the variable exec_start is set to true because of the fact that exec_level was greater than

zero. Now when the flags._array is checked, both of the variables exec_start and exec_end

are true. The variable current_settings.first..attribute is assigned the value of executable,

and processed as were the preceding executable statements,

43

Task allows the user to input data to the program.
Task will verify input to ensure that input is valid

task body KEYREAD is

CHARACTER-INPUT: ROCKETCONTROLINPUT:
CHARACTERIO character,
DONE boolean:= FALSE;
TEST natural;

begin

select Q
accept start;

terminate;
end select;

Figure 26 Sample input code

For the last executable line in this example, the variable execlevel and

execend are both set to true. When the lexical analyzer reaches the end of the line marker,

the flags-array is checked. With the executable statements having the highest precedence,

they are checked first. Both of the flags are set to true, which means that at least one

executable statement either started and finished on this line or an executable statement was

finished on this line. In this case, it was the later of the two. The variable

current_settings.first attribute is assigned the value of executable. Then the variable

currentsettings is checked for each report. In this case, for all reports, the current-settings

are valid and each report countarray is incremented by one.

b. Declaration Statements

When the parser recognizes the identifier 'characterinput' as the start of a

declaration statement, the variable dec-start is set to true (See bubble 2 of Figure 26). When

the parser reaches the semicolon, it recognizes the end of the declaration statement and sets

the variable dec_end to true. In this case, there are no further statement types and the end-

44

of-line marker is reached in the lexical analyzer. At this point the procedure add-jto-array

is called and is processed as discussed above. In this example, all four declaration

statements are parsed and counted in the same manner as the first statement.

c. Comments on Own Line

Unlike executable statements, declarations and compiler directives, all

comments and blank lines are handled directly from the lexical analyzer. When the lexical

analyzer recognizes a comment on a line by itself, (See bubble 3 in Figure 26), a comment

flag is set to true, the procedure determine-type_comment is called first and then the

procedure addtoarray is called. The lexical analyzer recognizes a comment on a line by

itself using the following rules:

"* Zero or more spaces or tabs between the start of line marker and two
hyphens.

"* Any combination of one or more characters between the two hyphens and
the end of line marker.

The procedure determinetypescomment is passed the length of the current

line, the third character the line and the string of characters from one to the current line

length. The main purpose of determine_type_comment is to see if the current comment

being parsed is either a regular comment on a line by itself or a banner comment. The

actions taken for banner comments are discussed below. In this case, the comment is not a

banner comment.

Once inside add_to array, the first check that is applicable for comments is

determining if the current comment is a full line of code. This is true for this case. The

current_settings.firstattribute will be set to comments_onownline and the procedure

determinewhich-array will be called. As discussed earlier, the procedure

determine_whicharray will check all of the five fields of the variable current_settings and

increase each array by one when no discrepancies are found. In this case, only the arrays

for reports C, E and F are incremented. They are the only reports that have comments on

own line marked as included.

45

d. Banner Comments

A banner comment is a line of symbols used to visually separate blocks of

comments or blocks of source code. (See bubble 4 in Figure 26) The actions taken for

banner comments are similar to regular comments except as noted here. Inside of the lexical

analyzer there are two places where a banner comment may be recognized. The first rule is

the same rule discussed above for comments. The second rule that looks for a banner

comment made up of just hyphens. The rule used is as follows:

"• Between the start of line marker and the first three hyphens, there can only
be zero or more blanks and or tabs.

"* Following the first three hyphens there can be zero or more hyphens.

"• Between the hyphens and the end of line marker there can only be zero or
more blanks and or tabs.

In the first case the procedure determine-typecomment is called. The

comment is then parsed looking for a repetition of the third through the sixth character. The

third through sixth character needs to repeated at least four times to count the comment as

a banner comment. If the comment meets the criteria, then the start and stop flags for banner

comments are set to true. If the comment does not meet the criteria then the start and stop

flags for a comment on a line by itself are set to true. The procedure add-toqarray is called

next. The actions taken are similar to those discussed above.

e. Blank Lines

When the lexical analyzer recognizes a blank line (see bubble 5 in Figure 26)

the blank_line flag is set to true and the procedure addto-array is called. In this example,

for any of the blank lines, the start and end flags for blank lines will be set to true.

Once inside addtoarray, the first check that is applicable for blank lines is

determining if line of code in question is a full line of code. This is true for this example.

The current..settings.first_attribute will be set to blank_lines and the procedure

determinewhich_array will be called. As discussed earlier, the procedure

determine_whicharray will check all of the five fields of the variable currentsettings and

46

increase the corresponding entry of each array by one if no discrepancies are found. In this

case, this line will only be added to report F. Reports A through E do not have blank lines

marked as included, therefore their arrays are not increased.

f. OUTPUT

After the source files have been parsed and measurements collected, the data

must be presented in a way that can be read and understood by the people who request the

measurements. For the example of using task_.packag.a as the Ada source files, a copy of

each possible report was requested and generated. The different reports will show how

using different rules can result in different but correct results.

For brevity, only parts of each report are shown. The complete listing of each

report are included in Appendix C. The file task-package.a was processed by the

Automated Ada Physical Source Line Counter producing reports A through F. (See Figure

27) (See Figure 28) (See Figure 29) (See Figure 30) (See Figure 31) (See Figure 32) To

compare the results of this tool, the Unix utility wc [SUN 90] was also ran on the file

task.package.a, which calculated a total of 284 lines for the file. Reports A through the F

also report the number of lines, but also provide additional information as detailed in the

SEI Framework for Size Measurement. [SEI-B 92]

Report A is -• tools basic definition for counting physical source lines of

code. Report A details the total number of lines and individual totals for each value marked

as included. Report A measures all noncomment and nonblank physical source line. (See

Figure 27) Report A measured a total of 193 lines of physical source lines of code.

Report B is an example of a report that can be used for project tracking. The

results from this report can be used to track development status. Report B measures the total

number of lines, individual totals for values marked as included and a two-dimensional

array consisting of the attributes development status and how produced. (See Figure 28)

This report will also count any removed code if annotated with a special comment. Report

B measured a total of 193 physical source lines of code.

47

REPORT A

Report Name: Thesis example
File List used: example
Requested by: Kevin J. Walsh

Measured as: Physical source lines

Delivered as: Delivered as source

Counted: 193
Estimated: 0

Total Total Individual
Includes Excludes totals

Statement type
When a line or statement contains more than
one type, classify it as the type with the
highest precedence.

1 Executables Precedence => 1 XXXX 157
2 Nonexecutables
3 Declarations 2 XXXX 36
4 Compiler Directives 3 XXXX 0
5 Comments
6 On their own lines 4 XXXX 0
7 On lines with source code 5 XXXX 0
8 Banners and nonblank spacers 6 XXXX 0
9 Blank (empty) comments 7 XXXX 0
10 Blank lines 8 XXXX 0

Figure 27 Partial output of Report A

Report C is an example of a report that can be used for project analysis. This

report would usually be requested only at the end of a project. The results would be used to

provide for better estimates of future projects. Report C measures the total number of lines,

individual totals for all values marked as included and a two-dimensional array consisting

48

REPORT B

Report Name: Thesis example
File List used: example
Requested by: Kevin J. Walsh

Measured as: Physical source lines

Delivered as: Delivered as source

Counted: 193
Estimated: 0

Total Total Individual
Includes Excludes totals

Statement type
When a line or statement contains more than
one type, classify it as the type with the
highest precedence.

1 Executables Precedence => 1 XXXX 157
2 Nonexecutables
3 Declarations 2 XXXX 36
4 Compiler Directives 3 XXXX 0
5 Comments
6 On their own lines 4 XXXX 0
7 On lines with source code 5 XXXX 0
8 Banners and nonblank spacers 6 XXXX 0
9 Blank (empty) comments 7 XXXX 0
10 Blank lines 8 XXXX 0

Figure 28 Partial output of Report B

of the attributes statement type and how produced. Report C measured a total of 240

physical source lines.

Report D is an example of a report used for reuse measurement. The results

of this report can be used to evaluate the amount of software reuse. Report D measures the

total number of lines of lines, individual totals for all values marked as included and a two-

49

REPORT C

Report Name: Thesis example

File List used: example
Requested by: Kevin J. Walsh

Measured as: Physical source lines

Delivered as: Delivered as source

Counted: 240
Estimated: 0

Total Total Individual
Includes Excludes totals

Statement type
When a line or statement contains more than
one type, classify it as the type with the
highest precedence.

1 Executables Precedence => 1 XXXX 157
2 Nonexecutables
3 Declarations 2 XXXX 36
4 Compiler Directives 3 XXXX 0
5 Comments
6 On their own lines 4 XXXX 47
7 On lines with source code 5 XXXX 0
8 Banners and nonblank spacers 6 XXXX 0
9 Blank (empty) comments 7 0XXX 0
10 Blank lines 8 XXXX 0

Figure 29 Partial output of Report C

dimensional array consisting of the attributes how produced and origin. For this example

file, report D measured a total of 193 lines of physical source lines of code.

Report E is an example of the combination of two previous report

specifications. Report E is also used for project analysis. This report would be requested at

the end of a project. The results would then be used to better estimates for future projects.

50

REPORT D

Report Name: Thesis example

File List used: example
Requested by: Kevin J. Walsh

Measured as: Physical source lines

Delivered as: Delivered as source

Counted: 193
Estimated: 0

Total Total Individual
Includes Excludes totals

Statement type
When a line or statement contains more than
one type, classify it as the type with the
highest precedence.

I Executables Precedence => I XXXX 157
2 Nonexecutables
3 Declarations 2 XXXX 36
4 Compiler Directives 3 XXXX 0
5 Comments
6 On their own lines 4 XXXX 0
7 On lines with source code 5 XXXX 0
8 Banners and nonblank spacers 6 XXXX 0
9 Blank (empty) comments 7 XXXX 0
10 Blank lines 8 XXXX 0

Figure 30 Partial output of Report D

Report E measures the total number of lines, individual totals for all values marked as true

and a three-dimensional array consisting of the three attributes how produced, statement

type and origin. For this example file, report E measured a total of 240 physical source lines

of code.

51

REPORT E

Report Name: Thesis example

File List used: example
Requested by: Kevin J. Walsh

Measured as: Physical source lines

Delivered as: Delivered as source

Counted: 240
Estimated: 0

Total Total Individual
Includes Excludes totals

Statement type
When a line or statement contains more than
one type, classify it as the type with the
highest precedence.

I Executables Precedence => I XXXX 157
2 Nonexecutables
3 Declarations 2 XXXX 36
4 Compiler Directives 3 XXXX 0
5 Comments
6 On their own lines 4 XXXX 47
7 On lines with source code 5 XXXX 0
8 Banners and nonblank spacers 6 XXXX 0
9 Blank (empty) comments 7 XXXX 0
10 Blank lines 8 XXXX 0

Figure 31 Partial output of Report E

Report F is a us, .•zfined report. The user can change any of the values for

each of the five attributes supported from included to excluded or vice versa. In addition,

the user can request any combination of two, three, four and five dimensional arrays.

52

However, any combination of four or five dimensional arrays (all five attributes) will be

reported as ten three dimensional reports. In this example report F measures the total lines,

individual totals for all values marked as included. In contrast to report A that measures

only noncomment and nonblank lines, report F measures all physical source lines of code.

For this example, report F measures a total of 284 physical lines of code. This is the same

result as the Unix wc utility. However, report F gives the reader more information than just

the total number of lines.

F. SUMMARY

In summary, this chapter has discussed the tool requirements, tool limitations,

command line invocation, an extended example and reports generated from the extended

example.

53

REPORT F

Report Name: Thesis example

File List used: example
Requested by: Kevin J. Walsh

Measured as: Physical source lines

Delivered as: Delivered as source

Counted: 284
Estimated: 0

Total Total Individual
Includes Excludes totals

Statement type
When a line or statement contains more than
one type, classify it as the type with the
highest precedence.

1 Executables Precedence => I XXXX 157
2 Nonexecutables
3 Declarations 2 XXXX 36
4 Compiler Directives 3 XXXX 0
5 Comments
6 On their own lines 4 XXXX 47
7 On lines with source code 5 XXXX 0
8 Banners and nonblank spacers 6 XXXX 5
9 Blank (empty) comments 7 XXXX 0
10 Blank lines 8 XXXX 39

Figure 32 Partial output of Report F

54

V. SUMMARY AND CONCLUSIONS

There were two areas addressed by this research, the first was to look at the possibility

of automating the SEI Framework for Size Measurement. The second was to look at how

to provide the flexibility outlined in the SEI Framework for Size Measurement. This

chapter provides the answers to these questions. Section A summarizes the significant

results of this research. Section B concludes by giving suggestions for future research.

A. RESEARCH SUMMARY

The research studied the SEI Framework and developed a tool to implement attributes

of the framework. It was determined that a prototype tool could be implemented supporting

the following attributes statement type; how produced; origin; usage and development

status. The user-interface was designed to mimic the SEI Checklist for each supported

attribute. The user-interface calls a parser that performs the measurements according to

user-defined requests. Once the parser calculates the counts for the source, the final step is

to generate the user-requested reports.

After performing the development, testing and evaluation of the various features of

this project, we have reached the following conclusions:

The first result of this research demonstrated that the SEI Framework for Size

Measurements can be implemented in a tool using the Ada programing language. The tool

consists of programed Ada code and generated Ada code. The generated Ada code was

produced using TAE, Aflex and Ayacc. TAE provides the user-interface; Aflex produces a

lexical analyzer, and Ayacc produces a parser. The programmed Ada code was used to

integrate the three tools and to produce a report generation capability. The result is a tool

that implements a major portion of the SET Framework in Ada, with minimal execution

cost.

The second outcome of this study demonstrated that the framework's flexibility can

be maintained and implemented using source flags. The tool uses those flags to capture the

55

flexibility of SEI's framework checklist and generate multiple reports during one pass of

the Add source files. Another mechanism employed the use of global variables that are used

during the parsing of the Ada code. These global variables are declared for each report to

separate the different values the supported attributes may have.

B. RECOMMENDATIONS

Program managers and software developers should use tools such as the one

developed in this research to track the entire software project process and compare the

current program state against the estimated or planned program state at predetermined

points in time. The results of the tool provide clear and consistent measurement results

thereby allowing for more accurate decision making.

Since this work is among the. first to use the SEI's framework, there are a large number

of areas where it can be expanded with future studies. Some of these include:

The entire set of attributes outlined in the SEI Framework for Size Measurement is not

implemented in this tool. The functionality and replication attributes are not supported in

this tool. The attribute functionality identifies the number of linL, of code that are a

functional part of the code and the number of lines of code that are not functional part of

the code. Whereas the attribute replication describes how to account for a software project's

master source statements from its copies. To implement both of these attributes would

require research into how to integrate existing tools, such as the Unix diff, or to build other

tools.

The Automated Ada Physical Source Line Counter only measures physical source

lines of code. The SEI framework also allows for measurement of logical source

statements. To implement logical source measures research is needed to define exact and

complete rules for identifying the beginnings and endings for all possible statement types.

The current tool is implemented for the Ada language. The tool can be extended to

support other programming languages, such as C and C++. Developmeat of an appropriate

C parser would be needed along with interaction into the tool itself and its user-interface.

56

Currently the SEI framework does not involve measurements in areas outside of size,

effort and quality. Research extending the SEI framework to other metric principles such

as complexity is needed.

Finally, this tool provides a clear and consistent size measurement of Ada source files.

The result of this and future research will improve the ability of software developers to

accurately quantify and measure software projects. The metrics produced by these efforts

will improve software productivity and quality. These metrics will provide additional tools

to the software developer to ensure that projects meet the time and cost constraints. This

research has established some initial observations and steps of how to automate the SEI

Framework for Size Measurement, but more questions are left unanswered.

57

APPENDIX A USER MANUAL

A. REQUIREMENTS

1. Hardware

The Automated Ada Physical Source Line Counter requires the use of an Unix

workstation. The tool has successfully run on several SPARC compliant computers:

Solbourne Computer S4000, Sun SPARC station 10, Sun SPARC station 1 and Sun

SPARC station 2.

2. Software

The Automated Ada Physical Source Line Counter requires the use of "X-

windows" to operate. This tool has worked under Openwindows and Motif.

3. Input

The Automated Ada Physical Source Line Counter requires the entering of

several pieces of information to run correctly. The information that is required are the input

filename, output filename, name of person requesting report and name of the report. The

first two items are required information. The second two pieces of information are not

required, but suggested.

Special comments are used to distinguish between the different values of the four

attributes how produced, origin, usage and development status. (See Figure A-l) These

special comments must be entered by the code maintainer manually. These special

comments flags are recognized by the lexical analyzer and change the second through the

fifth field of the variable current.settings. All special comments are in the form of "--
*_<text>". The double hyphens identify the line as a comment. The asterisk is included for

compatibility with other tools such as Adadl. [SSD 901 The text corresponds to the unique

values of the four attributes how produced, origin, usage and development status. The lines

that the special comments are on are not included in the measurement.

58

Attributes Description
How Programmed

--*HProgrammed Statements prepared by programmers that are

not modifications of pre-existing statements

--*_Generated Created by using tools to produce compilable
statements automatically

--*_Converted Pre-existing statements that are translated
automatically or with minor human interven-
tion

--*_Copied Those statements taken verbatim from other
sources and used as part of the master source
code for the new product

--.*_Modified Modifications are adaptations made to pre-

existing statements so that they can be used
in a new product, build, or release

--*-Removed All statements that are removed from prior
code when that code is copied or modified for
use in a new or revised product

Origin

--*_Newwork Statements that implement new designs

--*_Previousversion A previous version, build or release

--*_COTS Commercial off the shelf software

--*_GFS Government furnished software
--*_Anotherproduct Another product

--*_VSL.sp~tlibrary Vendor-supplied language support library

_ S OS (unmodified)

--*_VS_OS_or_utility A vendor-supplied operating system or utility
(unmodified)

--*_A_modifiedspt_lib A local or modified language support library
or operating system

--*~_Other_comm_lib Other commercial library

--*_Reuselibrary A reuse library (software designed for reuse)

--*_Other_Software_component Other software component or library

Figure A-I Special Comments

59

Usage
*_Part_of-product All code incorporated into the primary prod-

uct and all code delivered with or as part of
the product that is developed and tested as if
it were to operate in the primary product

-*_Extemal-to-product All code that is produced or delivered by the
project that is not an integral part of the pri-
mary product

Development Status

-*_Estimatedcor-planned The total number of lines estimated for a par-
ticular software module

.. *_Designed Appropriate stage of 2167 development

-*_Coded Appropriate stage of 2167 development

-- *_Unittests,.completed Appropriate stage of 2167 development

-*_Integrated intocomponents Appropriate stage of 2167 development

.-*_Test readiness review-completed Appropriate stage of 2167 development

-- *_CSCI completed Appropriate stage of 2167 development
-*_System tests completed Appropriate stage of 2167 development

Figure A-I Special Comments

4. Legal Ada Syntax

The Automated Ada Physical Source Line Counter will only work with

syntactically correct Ada source files. In some instances, generated code will have

embedded special characters, such as (AL, page breaks for printing) that will cause a syntax

error in the parser. This particular error does not cause the tool to terminate, but there may

be some embedded characters that do. This prototype tool was built using version 1.0 of

Ayacc [TAB 88]. A newer and improved version was released after the tool was built and

offers some improvement in acceptance of Ada source files.

60

B. LIMITATIONS

1. Package Conflicts

The parser generated by the two tools Ayacc uses a grammar supplied be the user.

[TAB 881 For this tool, the grammar was the one supplied with Ayacc, but modified for

purposes of the tool. For the situation of recognizing either a package spec, a package body

or a generic package requires that for the proper counting of lines, the entire package spec,

package declaration or generic package declaration must be one line or the final count may

be incorrect.

gen inst:
PACKAGETOKEN IDENTIFIER IS_TOKEN
NEWTOKEN expanded-n .gen._act-part. ';'

I PROCEDURE__ident__IS_
NEWTOKEN expanded-n .gen act-part. '

I FUNCTIONTOKEN designator IS-TOKEN
NEWTOKEN expandedjn .gen-act-part.,';

Figure A-2 Example of Ada.y input file to Ayacc

2. Coding Style

The Automated Ada Physical Source Line Counter counts physical source lines

of code and is based upon the SEI framework on size. [SEI-B 92] Different coding styles

can and will result in different results. For example, lets compare a short example of the

same code, but different writing styles. (See Figure A-3) The total number of non-

comment, non-blank lines for version one would be two. However, the total for non-

comment, non-blank lines for the same exact code in version two results in a total of five.

The same code, only different coding styles. The use of a pretty printer on the Ada source

files prior to using the Automated Ada Physical Source Line Counter will ensure consistent

results for reports A through E.

61

Version One

procedure EXAMPLEONE is TEMPNT: integer:= 0; begin

TEMPINT :- TEMPINT + 1; end EXAMPLE-.ONE;

Version Two

procedure EXAMPLEJIWO is

TEMPNT: integer= 0;

begin

TEMP_INT := TEMPPINT + 1;

end EXAMPLETWO;

Figure A-3 Example of two different coding styles

C. COMMAND LINE INVOCATION

To start the Automated Ada Physical Source Line Counter, the user must either be in

the directory that contains the tool or have the directory containing the Automated Ada

Physical Source Line Counter in a valid path statement. In addition, the user must be

running in an X-windows environment (operating motif for example) To invoke the tool,

any Unix program execution method may be employed, but input and output may not be

redirected.

D. USER INTERFACE

The user interface provides a window type access that is an easy-to-use method to

request one or several pre-defined reports or to create an individualized report. Each of the

supported attributes is contained in its own panel or screen. The user interface is made up

of eleven panels. The panels are made up of selection items, text items, text and integer

keyin items and labels. There are three types of selection items. The types are push-button,

checkboxes and radio buttons.Each of the panels have default settings for push-buttons,

radio-buttons, integer keyin items and checkboxes. Each default selection is highlighted.

62

To change or add too the default selection, the user must use the left mouse button. Several

of the figures are labeled one, two or three. The items with a one label means that those

items are radio buttons. Items with a label two are push-buttons. Finally, the items labeled

three are keyin items.

1. Push-buttons

The push-button is used to connect one panel to another. The push-buttons are

shaped like a rectangle. (See Figure A-4) The default push-button can be selected when the

return key is pressed while the cursor is in that panel.The push-buttons for each panel are

displayed along the bottom. Two of these push-buttons are common to each panel and will

be discussed separately from each particular panel. The first push-button is the "Quit"

button. The other push-button is the "Help" button. When the quit button is pressed, the quit

panel is displayed over the top of the current panel. The quit panel gives the user the choice

to quit the application, or to go back to the panel that they were just on. When the help

button is pressed, a help panel with information particular to that panel will be displayed.

When the user is finished with the help screen, the help screen will disappear and the panel

that initiated the help screen will again be the active screen.

Figure A-4 Example of Push-buttons

63

2. Cbeckboxs

The checkboxes are used whenever the user has the choice to pick more than one

item. The checkboxes are shaped like a square. For example the user can pick just one

report, say A, an or the user can pick all six reports, A through F.

IA: Nh 3D: A Mauj=

O B; e TmCV 0 E Imjm cAuW(C+D)

Figure A-5 Available Report Names

3. Radio-buttons

The radio buttons are used when the user can pick only one of the items in the

group. The radio-buttons are shaped like a diamond. At least one item will always be

picked. For example, if the user picks the value blank lines to be included in report F, then

the radio button for "Includes" will be highlighted. The button for "Excludes" will change

from highlighted to blank and vice versa.

4. Labels and Text/integer Keyin items

Labels are used to identify the two types of keyin items. (See Figure A-6) The

labels are place holders and have no action associated with them. The text keyin items will

accept any input from the keyboard. However, if this information is the filelist, then the tool

will terminate if a correct file is not found. The integer keyin fields are used for the setting

of the precedence levels for report F. The precedence levels for reports A through E are

preset and can only be changed by going into the source code and manually changing the

64

values. For the integer keyin fields, TAE will check to ensure that the value is within the

prescribe range, which is from one through and including eight. However, TAE does not

check to see if duplicate values are entered.

Nm [1NTm

TextFile t Labels Keyin |

Fields [

SFie NinuxFd[

Figure A-6 Text Keyin fields and labels

E. INTRODUCTORY PANEL

The first panel is an introduction panel. The introduction panel contains the name of

the tool, name of the author and three push-buttons displayed along the bottom. Beside the

quit and help push-buttons, the other push-button is the "Next screen" button. The next

screen button will make the introduction panel disappear, and bring up the second panel.

The next screen push-button is the default push-button for the introduction panel.

F. INPUT PANEL

The second panel is where the user will enter the mandatory information for the tool

to operate. The second panel contains four string keyin areas, a group of six checkboxes

and four push-buttons. The string keyin areas are for the report name, file list, requestor

name and output file name, respectively. The user enters the appropriate information by

placing the cursor over the window and type in the appropriate information. Six checkboxes

represent six different reports that can be generated by this tool. Any one or all of the

65

checkboxes may be selected. Report A is the default selection. In addition to the quit and

help push-button, the second panel also has displayed along the bottom a "Generate

Report" push-button and a "Specify Custom Report" push-button. When the generate

report button is pressed, the second panel will disappear and the generate report panel will

appear on the screen. When the specify custom report push-button is selected, the second

panel disappears, and activates the third panel. The generate report push-button is the

default push-button for the second panel.

G. AITRIBUTE PANELS

The third through the seventh panels contain the attributes of the SEI checklist, one

attribute per panel. (See Figure A-7) (See Figure A-8) (See Figure A-9) (See Figure A-

10) (See Figure A-11) There are five push-buttons on each of these panels. The first two

push-buttons are the quit and help buttons. Another push-button is the "Previous Screen"

push-button. When the previous screen button is pressed, the current panel disappears, and

activates the previous panel. The next push-button is labeled "Next Screen". When pressed,

the current panel will disappear, activating the next panel In the sequence. The last push-

button is the generate report button. When this button is pressed it will make the current

panel disappear and activate the generate report panel. The generate report panel is the

default button..

Along the top right comer in panels three through seven are two radio-buttons

displayed, one above the other. These radio-buttons allow the user to specify that in

addition to the individual totals, this attribute will be included in a multi-dimension array

at the end of the normal report format. When this choice is selected, all of the attributes

selected as such (must have at least two) will be displayed as two or three dimensional

arrays at the end of report F. When more than three attributes are selected, then all

combinations of N choose three will be displayed at the end of report F, where N will be

either four or five. The other major part of panels three through seven are the radio-buttons

that correspond to the values for each attribute. All of the radio-buttons are the same, either

66

Statement Type Order of Precedence W)Data Array

0 o
1. Executables: 1 bldIB 0

2. Noneecutables:

3. Declarations 2 4rnces 0 EzWn

4. Compiler Directives 3E * iles (a E

S. Comments
6. Ontheirown Iw"" e cimdles

7. With Source Code b • * mEumes
8. Bannere/non blank 6 M v

9. Blank (empty) comments 7 ?wbdu *Ek v

10. Blank Lines f ¢ uds • ade

(D Generate Report

E~r

E plicalon P

Figure A-7 Statement Type Panel

67

WMtaW Gmerai.uiiiudurInW

0
HOw Poduced DefJirton

SData Ary

0
1. Programmed *Includes Excludes

2. Generated with source code generators + Includes Excludes

3. Converted with automated translators I lncludes C Excludes

4. Copied or resed without change *Includes Excludes

5. Modified *Includes 0Excludes

6. Removed (Includes + Excludes

"Qut Pre": I_ _ _

Figure A-8 How Produced Panel

68

0
Or 4. I In

SData Array

1. 1ukn upuImraist• u *Idude xcudes
2. Prdoruk: ftkmwaaptmdftm

3. A pwu nfdwno .m *Include 0Exdudes
4. OmmrWIoffu dk lftnw (COTS) *Includes 0 Excludes

S. omnmmrn, bdW nftwm (GFS) +Includes 0 Exclude
6. kwoA ubd # Includes 0 Excludes

7. AwdoruppIuldWburvuppo1 Mry Includes Excludes

8. Awdoruzpphdopmrdnstm 0Includes *Excludes
9. A u d or lod bW spt I1rary or OS +Includes 0 Excludes
10. A mcnrchl laIncludes 0 Excludes
U. A lnowUaqrusof nud h foo•re) *Includes 0Excludes
12. Aw•tbmuftmwecoun•p oar Ufy Includes 0Exdudes

Genmae& p

Quitapication HepFvosSmNx c

Figure A-9 Origin Panel

69

Usage DefinitionSData Array

0
1. Inor aspartoftheprimaryproduct Includes Excludes

2. Extnmal to or in support of the primary) Includa e Excludes
prodct

DeliveryOpon
SDelivaed asurc

SDeivered in compiled or eecutable form, but not as source
(Under configuration control
0 Not under cornftiration control

SDon't care

i t appiai Hepvim Nuske

Figure A.10 Usage and Delivery Options Panel

70

Development statu Definition
C>Data Array

1. Estimated or Planned 0 Includes Excdudes
2. Designed Includes Excludes

3. CNded, under confiration control 0 Includes Excludes
4. Unit tests completed (Includes Excludes

5. Integrated into components yI 0Includes Excludes
6. Test readiness review completed 0 Includes * Excludes

7. Software(SCI) tests completed 0 Includes *Excludes

S. System tests completed *Includes 0 Excludes

Qutppication HepRvosSren Nc cen

Figure A-11 Development Status Panel

the include button is highlighted or the exclude button is highlighted. Panel three also has

eight integer keyin windows. Each integer keyin window corresponds to one of the values

of the attribute statement type. TAE will ensure that the precedence entered is within the

71

range of one through eight. However, if the user does not ensure that each precedence value

is unique, the results for report F may not be accurate.

H. CLARIFICATIONS (GENERAL and Ada) PANELS

The eight and ninth panels are for the general and Ada specific clarifications panels

respectively. (See Figure A-12) (See Figure A-13) These two panels are similar to panel

three, the difference being the number of radio-buttons. There are a total of thirteen general

clarifications and six Ada specific clarifications. Each clarification is associated with one

of the values of the attibute statement type.

I. GENERATE REPORT PANEL

The tenth panel is the generate report panel. (See Figure A-14) This panel has two

push-buttons displayed along the bottom of the panel, they are labeled cancel and generate

report. The generate report is the default button. The cancel button will make the generate

report panel disappear. The user must then use the mouse to click on the icon of the

previous panel. In addition to the push-buttons, this panel displays a text message

explaining the different options available to the user

J. QUIT PANEL

The last panel is the quit panel. This panel also has two push-buttons displayed along

the bottom of the panel, they are labeled quit and cancel. (See Figure A- 15) The quit button

is the default button. When the quit button is selected, the panel will disappear and the tool

will terminate. When the cancel button is selected, the quit panel disappears leaving the

previous panel as the active panel. In addition to the push-buttons, there is a text area that

displays the options to the user. This is provided in lieu of a help button.

"72

10ý=@WtGmnm PW rind ahe

clarifications (palrl) Listed dements are

agned to statemn t type 0)

1. Wll, continues, and no-opt *Includes 0 ExMudes
2. Empty Amts (e s") r Includes * Excluder
3. Statemats that instaniategenerics * +Includes * Excludes
4. Begin..end and (-) pain used as

executable statments * Includes * Excludes
5. Begin..end and (-) pairs that

delimit (xub)program bodies * Includes * Excludes
6. Logical eVreuions usedas test conditions "]'Includes * Excludes
7. Exprssion evalutionsused as

subprogram arV 5ents 0" C Includes * Excludes
8. End symbols that terminate 3)

executable statements D'- * Includes C Excludes

9. End symbols that terminate

declarations or (sub)program bodies P7 + Includes 0 Excludes

10. Then, die, and otherwise symbols 10 * Includes C Excludes

11. Elsif statements 0 *Includes C Excludes

12. Keywords like procedure division,
interface, and implementation "' Includes * Excludes

13. Labels (branching destinations)
on lines by thenselves r- * Includes Excludes

(D ["•knete Report I

Qutaplicatio epo n _usSrenNx Sre

Figure A-12 Clarifications (general) Panel

73

Qlarficons (Ada WAcii) ausioted to s ntatual

1. End symok that t~miate 00
dedradonsor (pmb~ropamhbodiaý lnchdadesFxcludes

2. Bloc sae b (%;begin... td) 0 lndades # Mcudet
3. With and ue dam *lncluda 0 Excudes
4. When (the keyordprecedig

exemtblestatemaib) *Indudes 0Exclude

5. Enceton (the keyord, usedaua
frameheader) *Include 0 dude

6. Pramaz *lncudes 0 Excludes

E d plic aio nfevo S NdSce

Figure A-13 Clarifications (Ada) Panel

74

You have pressed a "Generate Report"
utton in one of the panels.

Press Generate Report to have your report
generated.

Press Cancel to return to the previous panel
display.

Figure A-14 Generate Report Panel

75

You have pressed the "Quit" button In one of the

panels.

Press the "Quit" button to exit the tool.

Otherwise press the Cancel button to go back to
the previous panel.

IL QILJI E:
Figure A-15 Quit Panel

76

APPENDIX B. SOURCE CODE

ADA.Y

%token '&...(')'*''',"-.' '/c "T & ,P
%token '<' '"'>' T

%token ARROW DOUBLEDOT DOUBLESTAR ASSIGNMENT INEQUALITY
%token GREATER_THANOREQUAL LESSTHANOREQUAL
%token LEFT_LABEL_BRACKET RIGHT_LABELBRACKET
%token BOX

%token ABORT_TOKEN ABSTOKEN ACCEPTTOKEN ACCESSTOKEN
%token ALL__TOKEN ANDTOKEN ARRAYTOKEN ATTOKEN

%token BEGINJOKEN BODY_TOKEN

%token CASE_TOKEN CONSTANTTOKEN

%token DECLARETOKEN DELAYTOKEN DELTATOKEN DIGITSTOKEN DOTOKEN

%token ELSE_TOKEN ELSIF_TOKEN ENDTOKEN ENTRYTOKEN EXCEPTIONTOKEN
%token EXIT_TOKEN

%token FORTOKEN FUNCTION_TOKEN

%token GENERICTOKEN GOTOTOKEN

%token IFTOKEN IN_TOKEN IS_TOKEN

%token LIMITED_TOKEN LOOP_TOKEN

%token MOD_TOKEN

%token NEWTOKEN NOTTOKEN NULLTOKEN

%token OFTOKEN ORTOKEN OTHERSTOKEN OUTTOKEN

%token PACKAGETOKEN PRAGMATOKEN PRIVATETOKEN PROCEDURETOKEN

%token RAISETOKEN RANGE_TOKEN RECORDTOKEN REM_TOKEN
RENAMESTOKEN
%token RETURN_TOKEN REVERSETOKEN

%token SELECTTOKEN SEPARATETOKEN SUBTYPETOKEN

%token TASK_TOKEN TERMINATETOKEN THENTOKEN TYPE_TOKEN

77

%token USE-TOKEN

%token WHIEN.TOKEN WHILETOKEN WITHTOKEN

%token XORJTOKEN

%token I]DENTIFIER
%token INTGER.1ITERAL REALJITERAL

%token CHARACTERLITERAL STRING_LITERAL

%token ERROR I ERROR2 ERROR3 ERROIR4 ERROR5 ERROR6 ERROR7 ERROR8

%token ERROR9 ERROR1O ERRORI 1 ERROR12 ERROR13 ERROR14 ERRORI 5

%start compilation

subtype yystype is integer,

set~exec-stafl I(FLAGSARRAY(STMT TYPE'val(O). 1) :=true; 1;

set-exec-end IFLAGS-ARRAY(STMTTYPE'val(O), 2): true;),;

set~dec-start (FLAGSARRY(STMTTYPE'val(1), 1): true;
put("'dec start ");),.

set~decend : FLAGSARRY(STMTTYPE'val(l), 2): true;
put ('"dec end ");):

count~lastjine :4 if DECLE VEL > 0 then
DEC~REASELDECLEVEL;

end if,
newvjine;
GLOBAL.ADDTOARRAY;

task-body....r-b.ody-stub
checkj-askjtoken-.body-token_sin_n
checkjtaskjbody-.or...body...stub

check-task-token~bodyjoken~sim-n
TASKTOKEN
BODYJOKEN

set.dec..start

78

simn_n
ISTOKEN

set-dec-end.

check-tskjbody~orjbody...stub
SEPARATETOKEN

.decl...part

check..packageý.-body-or..body-.stub
check, ackage~body-stub-_common
check..packagej-body~or..stub

check-package...body-.stub-common
PACKAGETOKEN
BODYTOKEN

set-dec-start
simrnn
ISTOKEN

set-dec-end;

check pkage,.body-pr..stub
SEPARATETOKEN

.decl..part.

-- Clarifications general

-line 1
check~null-start: if COUNT CLARIFICATION
(GLOBAL.RECORDFLAGSF-PANELIO.LINEJ) then

FLAGS-ARRAY (STMTTYPE'val (0), 1)W= TRUE;
put (" exec start");

else
null;

end if;-,

check~null-end : I if COUNT_CLARIFICATION
(GLOBAL.RECORDý_FLAGSF.PANELIO.LINE 1) then

FLAGSARRAY (STMTTYPE'val (0), 2) := TRUE;
put (" exec end");

else
null;

end if;,

79

-line 2
-- Not applicable to Ada

-line 3
-expanded in-line
-- chek-genjnmstsar
-- check-en-ins(_end

-line 4
checbegin..end_jstart

I(if COUNTCLARIFICATION (GLOBAL.RECORDFLAGSRPANELIO.LINE-4) then
FLAGSARRAY (STMTTYPE'val (0). W) TRUE:
put C' exec start "

else
null-,

end if,)

check...begin..end-end
if COUNTCLARIFICATION (GLOBAL.RECORDFLAGS_F.PANEL1O.LINE-4) then
FLAGS_ARRAY (STMTTYPE'val (0), 2): TRUE;
put (" exec end")

else
null;

end if,)

checký_end_block-stint
ENDTOKEN checkjbegin..end~end

- line 5
check...begin..end-delinate-start

4if COUNTCLARIFICATION (GLOBAL.RECORD_-FLAGSF.PANELIOLINE 5) then
FLAGS_ARRAY (STMTTYPE'val (0), 1): TRUE;
put ("exec start)

else
null;

end if*,);

check~begin..enddelinate~end
I if COUNTCLARIFICATION (GLOBAL.RECORD _FLAGSF.PANEL1O.LINE 5) then

FLAGSARRY (STMTTYPE'val (0), 2): TRUE;
put (" exec end)

else
null;

end if,)

checkjbegiinshtm
check...begin..end~delinate_start BEGINLTOKEN check~begin..enddelinate-end

-line 6
-Not specific to Ada

80

f-ine 7ofEeublsteen
-- Are considered partofEeualstemn

-line 8
check~end-exec-statement-start

Iif COUNT_-CLARIFICATION (GLOBAL.RECORDFLAGSF.PANELIO.LINE-8) then
RL AGSARRAY (STMTJ YPE'vaI (0), 1) :=TRUE.
put C' exec start)

else
null;

end if;-,

check-end~exec_statement-end
Iif COUNLýCLARIFICATION (GLOBAL.RECORDFLAGSF.PANELIO.IJNE 8) then

FLAGSARRAY (STMT_ TYPE'val (0), 2):=TRUE,
put C' exec end)

else
null;

end if;-,

CHECKENDEXEQ-STMT
ENDTOKEN check-end-exec-statement end

-- line 9
check~end_declarationsý_start

Iif COUNTJ2CLARIFICATION (GLOBAL.RECORDFLAGSF.PANELIO.LINE 9) then
FLAGS...ARY (STMT TYPE'val (1), 1): TRUE;
put C' dec: start 1

else
null;

end if,)

check-end -declarations_end
4if COUNTCLARIFICATION (GLOBAL.RECORDFLAGSF.PANELIO.LINE9) then

FLAGSARRY (STMTTYPE'val (1), 2): TRUE;
put C' dec end)

else
null;

end if-,

check-end-dec
END_T-OKEN

check-end-declarations~end

-- line 10
-- check for else, then, others on line by themselves
-- Is now tested for inside of ada-lex.l

-line I1I
-- check for elsif on line by itself

81

-- is now tesed for inside of ada_lex.l

-- line 12
-- Does not apply to Ada

-- line 13
check_labelstart

(if COUNTCLARIFICATION (GLOBAL.RECORDFLAGS_F.P ANEL IOdINE_13) then
FLAGSARRAY (STMT_TYPE'val (0), 1):= TRUE;
put C' exec start");

else
null;

end if I;

checklabelend
I if COUNT_CLARIFICATION (GLOBAL.RECORDFLAGS_F.PANEL1OLINE_13) then

FLAGSARRAY (STMTTYPE'val (0), 2):= TRUE;
put (" exec end ");

else
null;

end if;-

-- Ada specific clarifications

-- line 1
-- checkec in fine 9 of general clarifications

-- line 2
-- checked in line 4 of general clarifications

-- line 3
checkwith_and_usestart

4 if COUNT_CLARIFICATION (GLOBAL.RECORDFLAGS_F.PANELI 1.LINE_3) then
FLAGSARRAY (STMT_TYPE'val (1), 1):= TRUE;
put (" dec start ");

else
null;

end if;)

checkwith_and_use_end
{ if COUNT_CLARIFICATION (GLOBAL.RECORDFLAGSF.PANEL11.LINE_3) then

FLAGSARRAY (STMTTYPE'val (1), 2):= TRUE;
put ("dec end ");

else
null;

end if;}

-- line 4
checkwhenstart

{ if COUNTCLARIFICATION (GLOBAL.RECORDFLAGSF.PANEL I.LINE_4) then

92

FLAGSARRAY (STMITTYPE'val (0), 1): TRUE;
put (exec start 1

else
nunl;

end if.)

check-when_end
t if COUNT_CLARIFICATION (GLOBAL.RECORDFLAGSF.PANELILLINE 4) then

FLAGSARRAY (STMTTYPE 'val (0), 2): TRUE.
put C' exec end")

else
null,

end if-.)

check-When
check-when_start WHENTOKEN check-when-end

-line 5
-- working

check-exception-keyword...start
(if COUNTCLARIFICATION (GLOBAL.RECORDFLAGSF.PANELII.LINE_5) then

FLAGS_ARRAY (STMTTYPE'val (0), 1): TRUE;
put C" exec start")

else
null;

end if*,;

check-exception-keyword-end
if COUNT_ýCLARIFICATION (GLOBAL.RECORDFLAGSF.PANELII.LINE-5) then
FLAGSARRAY (STMTTYPE'val (0), 2): TRUE;
put (" exec end")

else
null;

end if,)

-- line 6
check-..pragma-start

Iif COUNTCLARIFICATION (GLOBAL.RECORDFLAGSF.PANEL1 I LINE 6) then
FLAGS_ARRAY (STMT_ TYPE'val (2), 1): TRUE;
put ("pragma start")

else
null;

end if,)

check-pragma..end
(if COUNTCLARIFICATION (GLOBAL.RECORDFLAGSF.PANEL1 LIJNE 6) then

FLAGS_-ARRAY (STMT_-TYPE'val (2), 2): TRUE;
put C' pragma, end")

else
null;

83

end if-,

Ayacc grammer rules follow

prag: check..pragma~start
PRAGMA_TOKEN I]DENTIFIER .arg-.ascs ;*

checkpragma~end;

--prag: PRAGMAJToKEN IDENTIFIER .arg-.ascs;'

arg-asc:
expr
IMENTIFIER ARROW expr;

-- ** Added ~-
numeric literal
:REALLITERAL
I InTEGERLITERAL

basic..d
object~d set-dec-end

Iset~decstart ty~d set~dec-end
I subty..4 set-dec-end
Isubprg-d
I pkgjl
ItaskAd set_dec-.end
I gen-d set~decend
Iexcptn-d set_dec-end
I gen-inst
I renaming-d set-dec-end
I number-d set-dec-end
I error';';

objectLd
seLdec_start idents ' subty-ind .ASN-expr. ;

I set~dec_start idents :'CONSTANT-TOKEN subty-nd ._ASN-expr. ;

I setdec -start idents :' cý_an~def ..ASN...expr. ';'
I set~dec_start idents :'CONSTANT_TOKEN c-airrdef._ASN-expr.','

number-d

84

set~dec_star idents :' CONSTANT_TO)KEN ASSIGNMIENT expr ;';

iderns : IDENTEFIER ...idenL.;

ty-d:
full jy..d
Iincomplete-ty-d
Iprivjtyd

fuli~tyji
TYPETOKEN IDENTIFIER IS_TOKEN tyjlef ;

TYPEJOKEN IDENTIFER discr...part ISTOKEN ty~def''

ty...def :
enum-ty-defl integerjtyjlef
Irealty-defl array-ty-def
Irec-ty-def I access-ty..def
Iderive&..ty..def;

siibty-d:
set~dec-start SUBTYPETOKEN IDENTIFIER ISTOKEN subty-ind';';

subtyind :ty-mk .constrt.;

ty-imk :expande(Ln;

constrt
mg...c
Ifltgjpoint-c I fixed-point~c
Iaggr;

derivedty-def : NEWT`OKEN subtyjnd;

mg-c RANGE_TOKENrmg;

85

mg:
name
Iim-expr DOUBLEDOT sim-.expr,

enum-ty..def :
'(' enumjiLspe

... enum..iLspe..''

enum_liLspec :enun~iji;

enum_lit :IDENTIFIER I CHARACTERLITERAL;

integerjy~def: rng-c:

reaO-ty-def :
fltg..point~c I fixed...point-c;

fltg..pointc:
fltg-accuracy-lef .mg-c.

flkg..accuracy-def :
DIGITSTOKEN sim-expr;

fixed-.point-c:
fixed~accuracy-def mrg-.c.;

fixed~accuracyjlef:
DELTATOKEN sim..expr;

aiay-tyjief
uncnsvT4_n&.aay_4efl c_anjdef;

uncnstrn~arrmyjef:

86

ARRAY_TOKEN (' idx~subty-ief ... idx~subty~f.L. ')' OF_TOKEN
subty-ind;

c~arrdAef:

ARRAYJTOKEN idxsc OPTOKEN subty-ind;

idx~subty~def :name RANGETOKEN BOX;

idx-c : (dscrý_rng ... dscr mrg..);

dscrý_rng:
mg
mnaine mng..c;

rec-ty..def :
RECORD_-TOKEN

cinpons
CHECKEND_-DEC RECORDTOKEN;

--rec-ty-def :
--RECORDý_TOKEN

--cipons
--ENDTOKEN RECORDT'OKEN;

cmpons:
..prag.. ..cmpon~d.. cmpon-d ..prag..
I..prag.. ..cmpon-d.. vafiant-part ..prag..
I ..prag.. NIJLJOKCEN ';' ..prag..;

cmponk-d set -dec -start
idents ''cmpon-.subty....ef . ASN-expr. ;'set-dec...end;

cmpon...subty..def :subty-nd;

discr-.part :
'(' disczr spec ... discrý-spec..';

discr-.spec:

87

idenL¶ ':' ty ink._ASN~expr.;

variantipart:
CASE-TOKEN sim-n ISTOKEN

..prag.. variant ..Variant..
CHECKENDDEC CASE,-OKEN';';

--variant..part:
--CASE,_TOKEN simp~n ISTOKEN

-- ..prag.. variant ..VarianL.
-- ENDý_TOKEN CASETOKEN';';

variant:
CHECK...WHEN choice ..or-choice.. ARROW

cmpons;

-variant:
--WHEN....TKEN choice ..or-choice.. ARROW
-- cmnpons ;

choice : sim-expr
I name rn&.c
I sim~expr DOUBLE,_DOT sim~expr
I OTHERSTOKEN

access~tyj..ef : ACCESS_TOKEN subtyind;

incomplete,_y..d:
TYPETOK(EN JIDENTHFIER ;'

TYPETOKEN IDENTIFIER discr~pan';'

decl-.part:
..basicjdecl -item..
I ..basic-deci-item., body ..Iater_deci~tem..;

basic-deci-item:
basic..d
Irep....c I use...cl;

88

latardecUtem: body
Isubprgjl set.dec~end
I pkg~d set~dec_.end,
Itaskjdset-dec_end
Igen-d set~dece.nd

Iuse-Cl
I genjinst

body : proper...body I body-stub;

properj~ody:
subprg-.body I pkgjbody I task-..body;

name : sim...n
I CHARACTERLITERAL. I op-symbol.
lidxed-cmpon
Iselectedsmnpon I attribute;

sim...n :IDENTIFIER;

prefix: name

idxed-cmpon:
prefix aggr;

selected-cmpon : prefix'.' selector

selector : sim~n
I CHARACTERLITERAL I op~symbol I ALL-TOKEN;

attribute :prefix ... autribute~designator;

attribute...esignator:
simnn
IDIGITSTOKEN
IDELTATOKEN
IRANGETOKEN;

aggr:
('cmpon...asc ...cmpon asc..)'

89

cmpon Asc
expr
Uchice ..oKshoice.. ARROW expr
Isimecxpr DOUBLE-DOT sims.xpr

ainae rng..c;

expr:
rel..ANDý-rel.. I tel-AND_-THEN_rel..
mlre..OR_rel.. I rel..ORELSE_rel..
Irel..XOR~rel.;

rel :
sium~expr .relalop-sim-.P.xpr.
Isimexpr-NOT.ThN-_g..oKsim-.expr.NOT.ThCtynk;

sim..expr:
.unaryaddop.term..binaiyadd..op--term...

term :factor..muh~op...factor..;

factor pii .EXPpii. lABS_TOKEN pri INOýTJOKEN pri;

pri :
numeric Iiteial I NULLTOKEN
lallocator I qualified..expr
Iraine
lagg;

relal-op
I INEQUALrTY
I '<'

I LESSJTHAN-OREQUAL
I '>'

I GREATERTHANOREQUAL;

binary...Addop : 'I -'I '

unary-add..op +'I'-

90

mult-op:' I Tf I MODJTOKEN I REMTOKEN,

qualified-expr
myjkaggrorty~mkPexprP...;

allocator :
NEW_TOKEN tyjnk
(NEWTOKEN tyjnk aggr
I NEWTOKEN tyjnk ... aggr;

seq.otstmzs: ..prag.. stint..stmt.. fnull;) -Because of bug

stint:
.. abel.. smm-stint
I .. abel.. compouni~stmt
I error ;

--stmnt
--.. abel.. sim-stint

-- I .. abel.. cornpound-stint
-- I error 4 ;'I

sim..stmt :null~stint
Iset~exec~start assignment...stmt set_exec-end
I set -exec_start exit_stint set~exec_end
Iset_exec_Star!. return-stint set~execý_end
I set~exec,_start gotokstmt set~exec_end
Iset_exec_start delay...stint set~exec-end
I set_execý_start abort~stmnt set_exec..end
Iset~exec_start raise-stint set-exec-end
I set~execý_start code_stint set~exec_end
I set-exec_start namne ;' setexec end

--siin.stmt :nulL stint
-- assigninent~strt I exit_stint
-- Ireturn_strnt I goto..stmt
-- Idelay...stnt I abort stint
-- raise~strnt I codeý_stint

I- narne';

91

comnpound-stm
set....xecjtart istmt
I set-exec~start case-stint
Isetexec_.sar loop~stnt
I set-exec...start block-asti
Iset~exec..start accept stnt set_exec_end
Iset..exec_start select-stint set~exec_end

--compound~stint
--if stint

-I casesntm
-- Goop..stmnt
-*I blocký_stint
- accept-stnt
-- Iselect stnt;

label :
check-label~start
LERýLABELB3RACKET siin-n RIGHTLABELBRACKET

checkjlabel~end

nullstint : check__null_start NULLTOKEN ';' check-null-end

-- null_stint :NULLJO0KEN ';';

assignment~stint : name ASSIGNMIENT expr;'

if~stint
1IF_TOKEN cond THIENTOKEN

seq-oLsunits
..ELSIFý_cond._THENL_seq~of..stints..
Y-ES-seq...ofstmts.

CHECK_ENDEXEC_-STMT IFTOKEN';';

--ifstint :
--IF-TOKEN cond THENTOKEN

-- seq-oflistints
-.ELSIF-condTHEN-seq-of-stints..

--.ELSE-seq..of stints.
- END-TOKEN IFTOKEN';';

92

cond :expr;

case~sbnL
CASETOKEN expr IS-TOKEN

case_stint-alL.case~tmt-alL.
CHECK_.END_EXECSTMT CASE_TOKEN ;';

--case-stnt:
--CASETOKEN expr ISJO0KEN

-- case_stxnt_alt..caseý-stint-alL.
-. ENDTOKEN CASETOIKEN';'

casesunt_alt:
CHECK_-WHEN choice ..orý-choice.. ARROW

seq-of..stnts;

--casegstintalt :
--WHENTOKEN choice ..orj_choice.. ARROW
-- seq...oLstmnts

Ioop..smt:

.iteration~scheme. LOOPTOKEN
seq~oLstmts

CHECK...END_EXECSTMT LOOPTOKEN .sim-fl. ;';

--loop-stnt:
-- .sirnnC.

-. iteration..scheme. LOOPTOKEN
-- seq-of.stmts

-- ENDJ-OKEN LOOPffOKEN .simnu.';';

iteration_,scheme
: WHILE,_TOKEN cond
I WHILE_TOKEN error
I FOKTOKEN loop..prm..spec
I FORTOKEN error

Ioop..prmspec
IDENTIFIER IN_TOKEN REVERSE. dscr-ng;

93

block-.stint
.simrnC.

DECLARE__decipar.
check-begin.enC~start.
BEGINJOKEN
check..begin..end~sta

seq...otstmts
EXCElONexcpinjhanidler..excptn-handler...
check_end_block-stint .sifn-n.;'

-block..stmt
--.sun-nC.

-DECLARE--decl...part.

-- BEGIN.JOKEN
s-eq.oLstints

- EXCEPITON~excptnjiandler..excptn-handler...
-- ENDTOKEN .sim-n. '

exit-stint:~
EXITTOKEN .expande&.n. .WHEN-cond. ;';

return~stint :RETURN-TOKEN .expr. ';';I

goto...stmt :GOTOLTOKEN expanded..n';';

subprg-.d :subprg-.spec T'

procedurejdent:
setLde...start
PROCEDURETOKEN IDENTIFFIER

function...desig :
set~dcc-start

FUINCTIONTOKEN designator

--functionjiesig:
--set~dec-start
--FUNCTIONTOKEN designator se~dec...end;

94

subprg-spec
procedure_ident .ftnl.part. set~dec_end
I function-desig Afmi.part. RETUJRNTOKEN ty-mk set-dec.-.end;

designator I1DENTIFIER I opjsymbol

op..symbol: STRINGLITERAL,

fil-part :
*' pnn...spec .. _.prm spec..)'

prm-spec:
idents ':' mode ty-..mk ...ASN..expr.

mode : IN. I INTOKEN OUTr_TOKEN I OUTTOKEN

subprg-body:
subprg-.spec IS-TOKEN

.decl-part.
check-begin..end -delinate_start
BEGINTOKEN
checkbegin..end_delinate_end

seq...of..stints
EXCEPTIONq_excptnjiandler..excpmn-handler...
check begin..end Fdelinate,_start

ENDTOKEN .designator. ';'

check begin..end-delinate_end

--subprg-.body
--subprg...spec IS-TOKEN
-- .decl-.part.
--BEGINTOKEN
-_ seq..of..stints
--EXCEPTION-excptnjiandler..excptn~handler...
-- END_-TOKEN .designator.';';

pkg..d :pkg..spec';

packagejident
PACKAGETOKEN
IDENTIFIER

95

IS-TOKEN

set~dec_start~end:
{FLAGSARRAY(STMT-TYPE'val(1), 1) := true;
put (C dec start pkg ");
FLAGS.ARRAY(STMTJTYPE'val(1), 2) := true;
put (" dec end pkg")

--check..pkg-declaration
packagejdent

-- Set_dec-start-end
-- IS_TOKEN

check...pkg..declaration
PACKAGEJ-OKEN
IDENTIFIER
set~dec-.start
ISTOKEN
set~dec-end

pkg...spec
check4,kgjleclaraiof

..basic_deci-item..
.PRIVATE..basic-deci~item...

checký_end~declarationsý-start
check_endjlec

.Simnn.

--pkg..spec
PACKAGETOKEN

--IDDENTMFER JSTOKEN
-- ..basicjdelitem..
--.PRIVATE..basic deci -item...
--END_TOKEN .simjip.

pkg..body
check..pwkageJ-Wy~or...body-.stub

.BEGINhseq of...ss.EXCEPTION ex3cptn handier..excptI1_handier..
check_be-gin..end -delinate-start

END_ TOKEN .sim-A. ' ;'I
check...begin..end-delinate~end

96

--pkg..body
--PACKAGETOKEN BODY_TOKEN sim_n IS_TOKEN

--. ecl-.part.
-- BEGNIýseq-ofstmts.EXCEPTION-excptnjhandier..excptn-handler...

--ENDTOKEN .simji. ;

privj-y....d
TYPE,-TOKEN IDENTIFIER ISTOKEN LIMITED. PRIVATETOKEN';'

TYPE,_TOKEN IDENTIFIER discr..part IS_TOKEN .LIMITED. PRIVATETOKEN','.

use,_ci checký_with-and-use-start
USE_-TOKEN expanded..n ... expanded..n..''

check-with_and~use_end

--renamning-.d :
-- setjdec-start idents ':' ty..mk RENAMES_-TOKEN name ';'

-- I set-dec_start idents ':' EXCEPTIONTOKEN RENAMES_TOKEN expanded-n''
-- I package~ident RENAMES_.TOKEN expanded -n ';'
-- I subprg...spec RENAMESTOKEN name ';'

renaming-.d:
set-dec-start idents ':' ty..mk RENAMESTOKEN name';

I set..decý_start idents ':' EXCEPTIONý_TOKEN RENAMESTOKEN expanded-n';'
I PACKAGETOKEN IDENTIFIER RENAMESTOKEN expanded-n '

I subprg..spec RENAMESTOKEN name,;

task-d :task-spec';'

task-spec:
TASKTOKEN set~dec-start .TYPE. IDENTIFIER

.IS..ent~d_..rep_ciEND.sim..n.

task-body:
task-body..orijody.stub
CHECKBEGIN_-STMT seq..ofstmts

EXCEPTIONý_excptnjiandler..excptn-handler...
check...begin..end~delinate-start

ENDTOKEN .sim...n. ';'
check...begin..end-delinate...end

97

--task...body
--TASKJOKEN BODY_TOKEN sini-n ISTOKEN
-- .declj..arL.
--BEGIN_-TOKEN
-- seq-of..stmts
--EXCEPTION_excptnjfiandler..excptn-handler...

-- END TOKEN~smn''

entj
seLdec_start ENTRYTOKEN IDENTIFIER .frnUpart. set-dec-.end
I se~dec.start ENTRY_-TOKEN IDENTIFIR (' dscýrjng')' .fml-part ;'

seLjdec...end

ent_call_stint
..prag..namne;;

accepLstint
ACCEPTTOKEN sim-n .Pent-idxP..fml-pjxut

.DO__seqoj~fstints__END.sim-n..;;

ent~idx :expr ;

delay...stmt :DELAY-TOKEN sim-expr ;

select -stint :selec-wait
Icondal-ent-calll timed~ent-call

selec_wait:
SELECTTOKEN

select-alt
..OR-select-alt..
.ELSE,-seq...ofstints.
ENDJOKEN SELECTTOKEN;'

--selec_wait:
--SELECT_-TOKEN

-- select-alt
--.. OR;Lselect~alL.
-- £,Eseq.of-stints.

-- ENDTOKEN SELECT-..TKEN;'

98

selecLalt:
.WHEN-cond.ARROW.selec-wait~alt;

selec..yait~alt :accept-alt
klelayAt I tenninate~alt;

accept~alt:
accepLstmt.seq~oLstints.

delay_.alt:
delay-stmt.seq~of~stints.

terminate_alt :TERM_stint

condal-ent-cal:
SELECT-TOKEN

ent~call -stint
.seq-ofstmts.

ELSETOKEN
seC-of-strnts

ENDJTOKEN SELECT_-TOKEN';';

--condal-ent_call:
--SELECýTJOKEN

-- ent~call~stint
- seq-Lofstmnts.

--ELSE_TOKEN
-- seq-oC~stnts

-- ENDTOKEN SELECT_TOKEN';';

timed -ent~call:
SELECTJOKEN

ent_call_stint
.eq-oLstmts.

ORTOKEN
delay.alt
END_-TOKEN SELECT _TOKEN';';

--timed_ent_call:
--SELECT-TOKEN

99

-- ent~call-stint
- se-q..ofstmts.

--ORTOKEN
delay...alt SLCTKN;

abort..stmt : ABORTTOKEN name ...name..';';

compilation :..compilation unit.. count-iastjine

-compilation :..compdlation...unit..

compilation.-unit:
contexLci libraryAnit
I context~ci secondaryjinit;

library-unit :
subprg..dl pkg..d

I gen-ll gen..jnst
Isubprg~body

secondary-jrnit:
library.jmitjbody I subunit;

library-jini(body:
pkgjbody...or.subprg-body

context~ci ..with_cl..use_ci...

with-ci : check-with-and-use_start
WITHJTOKEN sim-n ... sim-n.. ;

check-with-and-ýuseý-end ;

--with-ci: set~dec-start WiTHOKEN sim-n ... sim-n.. ;'set-dec...end

body-.stub
subprg-.spec ISTOKEN SEPARATEý_TOKEN';

I check-package-bodyogr...body-stub set-dec-end';
I task...body-jr.body-stub set-dec-end';

100

--bdy-stub
- subprg-spec IS-TOKEN SEPARATETOKEN ;

-- I PACKAGE,_TOKEN BODYTOKEN simn-n ISTOKEN SEPARATETOKEN ;

I TASKTOKEN BODYJOKEN simnn ISTOKEN SEPARATETOKEN';'

subunit :SEPARATEJOKEN '(expanded-n ')' properbody

excptn_A set~dec_start idents ':' EXCEPTION_TOKEN ;

excpmn~handier~
CHECKWHEN excptn_choice ..or...excptn.choice.. ARROW
seq..ofsomts

--excptnjiandler:
--WHfENý_TOKEN excptn~choice ..or-excptn-choice.. ARROW

-. seq..ofstmts ;I

excptrk-choice :expanded-.n IOTHERS...OKEN;

raiseý-strnt :RAISE_-TOKEN .epandedji. ;';

gnd:gen-spec ';'

gen-spec:
gen-fmljpart subprg-spec
Igen-fnl-part pkg..spec

--gen~spec:
--genjfmU-art subprp-spec
-- IgenjfmU-art pkg-spec

genjfml..part :set~dec~start GENERICJ-OKEN set-dec-end ..gen..prm..d..

--gen-fml-part: GENERICTOKEN ..gen~.prm_d..

101

genjpmn.d
eL-dec..sta

idents '-. .IN.OUTr.. tyjnk. ASN~expr. ;

set~dec-2end
I set~dec~star

TypE..TOKEN EDENTIFIR ISJOKEN gen-tyjlf ;

set_dcc-end
Iset-dec-stafl

privjty..
se...dec...nd

I WITHTOKEN subprg-spec .ISBOX_-

--gen...pm...d
-idents 4:' .IN.OUT.. ty ink._ASN...expr. ;

-- I TYPETOKEN IDENTIFIER ISJTOKEN gen-ty-Aef ;

-- I WITHJOKEN subprg...spec .IS-BOX-.

gen~ty_def:
4(4 BOX 6)'

I RANGETOKEN BOX
I DIGITS...OKEN BOX
I DELTAJOKEN BOX
I arraytyjief
I access~ty-def

chleck~pkg~jnst~declaration:
PACKAGETOKEN
I1DENTIFIR
set~dec-start
ISTOKIEN
NEWJTOKEN

gen~jnst
check-pkg-jnst~declaration
4if COUNT_CLARIFICATION (GLOB3AL.RECORD..YLAGS_F.PANEL1O.LINE93) then

FLAGS,_ARRAY (STMTTYPE'val (1), 1): TRUE;
put("'dec start")

else
null;

end if-,
expanded-n
.gen-act,.part.

102

I if COUNT-CLARMFCATION (GLOBAL.RECORDFLAGS F.PANEL IO.LINEL3) then
FLAGS-..ARRAY (STMTJYPE'val (1), 2): TRUE;
put C' dec end')

else
null,

end if;,
1PROCEDURE__ident_S_S

Iif COUNT-CLARIFICATION (GLOBAL.RECORD_-FLAGSF.PANEL1O.LINE_3) then
FLAGSARRAY (STMTTYPE 'val (1), 1): TRUE;
put C' dec start")

else
null;

end if;)
NEWJfOKEN expande(Ln .gen...act~pant.

(if COUNTJ2,LARIFICATION (GLOBAL.RECORI)_FLAGS..F.PANELIOLINE 3) then
FLAGS.ARRAY (STMTTYPE'val (1), 2): TRUE;
put C' dec end)

else
null;

end if;,
Ifunctionjlesig ISTOKEN

(if COUNTJ2LARIFICATION (GLOBAL.RECQRD _FLAGSF.PANEL1OJLINE_3) then
FLAGS_.ARRAY (STMTJI'YPE'val (1), 1): TRUE;
put C' dec Start 4);

else
null;

end if; I
NEWTOKEN expanded~n Zen-act..part. ;

I if COUNT-.~CLARIFICATION (GLOBAL.RECORD_-FLAGSF.PANEL1OJLINE 3) then
FLAGS.ARRAY (SMTl_TYPE'val (1), 2): TRUE;
put C' dec end)

else
null;

end if;)

gen-act-.part
set-dec-start
.(' gen-asc ... gen-asc.. ')'

setdec-end

'('gen...asc ... gen-asc..')'

gen..asc :
.genjml.._prmARROW.genct..prm;

103

gcnjfml.ptm
sia-n~ I op-.symbol

gen~act-.prm
exprjiamnwe..or-subprg-n-.or-en~fn-or-ty..mk

rep-cl
ty..rep....c I address....c

tyjrep..cl :length-ci
lenum-jep-s.l
Irec~jep-c1

length~cl :FORTOKEN attribute USE_-TOKEN sim..expr';';

enum-epscl:

FOR...Jy...sim-nUSE.-aggr '

recjrepcsl:
FOR~tysint-n_USE_

RECORDTOKEN .algt....l.
..cmnpon-.cL..

CHECIQEND_.DEC RECORDJOKEN ';'

--rec-irpcil:
--FORty-sim-nUSE_

-RECORDTOKEN .algt-ýI.
-- ..cxnpon....l..

-- ENDJ-OKEN RECORD_-TOKEN ,

algLcl : AT_.TOKEN MODTOKEN simiexpr ;';

name ATTOKEN sim-expr RANGETOKEN mg';';

addressL_ci: FOR_TOKEN sim_n USETOKEN ATTOKEN sim-expr';';

code_stint :ty...mkjec-aggr ;';

104

..prag..
I..prag.. prag

.arg...ascs:
I 'C' arg-ascs T

arg.ascs :
arg..asc
I arg-ascs ',' arg-asc;

.. ASN~expr.:
IASSIGNMIENIT expr

... ident..:
I ... ident.. ,'IDENTIFIE

.constrt.
Iconstrt

expanded-n
IDENMiFIER
I expanded.n '.' IDENTIFIER

... enumj-i~spec.. :
I ...enum-lit~spec..',

enum-lit~spec;

.rn&..c.:
Irng..c;

... idx...subtyjlef..
I ...idx-subty_def.. ' idx..subtyjlef

... sciýrmg.. :
I ... dscrý-mg.. ,'dscrj-ng

..cmpon-O.. :
I ..cmpond.. cmponjl ..prag..

... disqr.spec..:
I ... discri-spec.. ';' discri-spec

..variant..

105

I.vaniant.. variant

..orS.hoice..:

I ..or...choice.. TI choice

..basic-.decUtemn..
..pn-..
I..basic-decLitem.. basic-dec~item ..prag..;

..iater-decclitem..
..prag..
I .. aterjdcclitem.. laterdecl~tem ..prag...

...cmpon~asc..:
I ... cmpon..asc.. ', cmpon..asc;

rel..ANDý_rel.. :
rel ANDTOKEN rel
hrel..AN1)_rel.. ANDTOKEN rel;

rel..OR~rel.. :
rel ORTOKEN rel
IreL.OR~rel.. OR OKEN rel,

rel..XOR~rel..:
rel
I..XOR~rel..;

..XOR~rel..:
rel XORTOKEN rel
I..XOR~rel.. XORTOKEN rel;

rel..ANDTHiEN=-rel.. :
rel ANDTOKEN THIENJTOKEN rel
Irel..ANDTHEN-rel.. AND..TOKEN THENTOKEN rel;

rel..ORELSE-reL..:
rel ORJOKEN ELSETOKEN rel
IteI..ORELSEL-tel.. OR.TOIEN ELSE_TOKEN rel;

106

arop...p-sim...expr.
Irelalopp sim...expr

sim_exprYNOT.Th~mg~rsim-expr.NOT.IN...yjnk.
sim-expr.NOT. IN-TOKEN mg;

.NOT. :
INOT_-TOKEN

.UnaryaddLop.term..binary addop-term..
term
Iunary...add..op term
l.unaryadd..op.termi..binary-.ad~op..jerm..
binary-.add-.op term;

factor..mult~op__factor..:
factor
Ifactor..mult-op__factor.. mulcop factor;

IDOUBLESTAR pri;

tyjnkaggr...orjy-..mkPexprP...,
prefix ... aggr;

..Stmft..
..prag..
I..stint.. stnt ..prag..;

..label..:
I..label.. label;

..ELSIF__cond_-THEN-seq..of~stints..:
I.JELSIF-cond_.THEN-seq....stmts..

ELSIFTOKEN cond THENTOKEN
seqjofLstnts

.ELSE,-se~oiLstmts.:
IELSETOKEN

seq~of.stmts

case-stjnLalt..case-ýstint-alt...
..prag..

107

cas..stmntýalt
..case."(_m..alL.;

..case-sbnLalL.:
I.CaSe-StMt.aILt. case-stintalt;

.SimPC.:
I Sim-.n ':'

sim-n.:
Isim..n

.iteration...scheme.
Iiteration..scheme

.REVERSE.:
IRE VERSEJfOKEN

.DECLARE__decl-par.
lset execý_start DECLARETOKEN

decl..partse-exec...end;

.EXCEPTIONý-excptnjuandler..excptn-handler...:
Icheck..exception..keyword..start

EXt2EPTIONJOKEN
check-.exception..keyword..end
..prag.. excptn_handlers seLexec..end

-.EXCEPTION_excptnjuandler..excptnjiandler...
-- [EXCEPTIONTOKEN ..prag.. excptn-handlers set-exec-end;

excpm...handlers:
excptn-handler
Iexcpti~handlers excptn..handler

.expanded~n.
Iexpanded..n

.WHEN__cond.
ICHECKWHEN cond;

--.WHIEN__cond.:
-- IWHIEN_-TOKEN cond;

l ob

.expr.:
Iexpr

fmL-part.:
Ifnl-part

..-. prmspec..:
I ._prnnspec.. ';' pnnspec

IN. :
IIN.JTOKEN;

.decl-.part. : dec..part;

.designator.:
I designator

.PRIVATE..basic_deci-item...:
Iset~dec_start

PRY VATEJ..OKEN
set~dec..end
..basicjdeci~tem..;

--Y.RIVATE-basic~deci~item...
-- I PRIVATEJOKEN
--.. basic-deci~itemn.. ;

.BEG4..-seq...of.stmts.EXCEP'HON excptn...handler..excptn~jiandler...

Icheck begin-.stmt
seq~oLstmnts

EXCEPTION__excptn..handler..excptn-handler...

--.BEGNýseq...ofstmts.BXCEPTION-excptnjiandler..excptnjihandler..

-- I BEGINJOKEN
-- seq..of..stmts

--EXCEPTON--excptni)-andler..excptn-handler...;

JIlMITD. :
ILIMIýEDTOKEN

109

... expanded-n..:
I ... expanded-n.. ',' expande&..n

.TYPE.:
rMYETOKEN

JS..enudtjLepsclENDsim-n.
IS_TOKEN

..ent -d..

..rep...cI..
ENDTOKEN .sim-o..

..Cflt-d..
..prag..
I..ent..d.. elitd .prag..;

..rep-ci..:
I.rep...cl.. rep..c1..prag..;

.Pent~idx p..fml..part.
.fin)part.
I '(entidx ')' .fml..part.

DOL_seq...otstns_)END.sim-n..:
IDOOKEN
seq...ofstints

ENDTOKEN .snmn.;

--.DO~seq..ofstmts _END.sim..n..
-- IDOOKE.N
-seq..of~stints

--ENDTOKEN .sim..n.;

..OR-select-alt.. :
I.OR~select~alt.. ORTOKEN select-alt;

.WHEN--condARROW.selecý-wait-alt:
selec-ýwait-alt
LCHCKWHEN cond ARROW selec-..wait alt;

--.WHiEN-condARROW.selec-wait-alt:
--selecý-wait~alt

-- IWHENTOKEN cond ARROW selec_wait-alt

110

acceptjtmt.seq.of~stints.
..prag.. accep(-stlt .seq-of~stmts.

delay-stmt~seq..pfstints.:
..prag.. delay-.stmt .seq-of.stmts.;

TERM~sbnt :..prag.. TERMINATEJOKEN ';'

..prag..

--TERM_stint :..prag.. setýexec...start TERMI1NATE_TOKEN';'
-- ..prag.. set-exec-end

.seq~oLstnits.:
..prag..

... name..:
I ... nwme.. ',' name

..Compilation...unit..
..prag..
I..compilationjinit.. compilationý-unit ..prag,.;

pkg~body..orsubprg..body :pkgjbody

..with~cL.use-ci...
I.with_cL.use_ci.... with-ci usesis;

useý-cis
..prag..
luse_cis use-ci ..prag..

... simnn..:
I ... sim..n.. ',' sim..n

..orý_excptn...choice.. :
I ..orý-excptn_ýchoice.. TI excpmnshoice;

..gen~jirm-d..

I..gen..prm..d.. gen-.pnn-A.d

IN.OUr..:

IIN-TOKEN OUTTOKEN;

JSBOX-.:
IISJOKEN namne
IISTOKEN BOX,

PROCEDURE__ident__IS_ subprg-.spcc ISTOKEN,

.gen actpart.
Igent....part;

... gen~asc..:
I ... gen..asc.. 4,$ gen..asc;

--.gen~m_pmARROW.gen-act...prm
-- setdec-start
-- ~gen...act-pnl
-- set~dece.nd

-- I
-- setdec-start
-- ~genjfml..prm ARROW gen-.act-.prmn
-- setdecend

.genjmlnIprrARROW.geq-act...prm:
gen~act-prm
Igefinml..prm ARROW gen~act-prm;

expropr name,_or-subprg-n.or -ent-n-orjty-jk
:expr;

FOR~ty-.simn-UJSE-
FORTOKEN sim-n USETOKEN;

.Algtpl.:

..prag..

112

I ..prag.. algtclI..prag..

..cmpon ci..
I ..cmpon cl..cmpon cl..prag..

ty..mk...rec-aggr :qualifiedexpr

package parser is

procedure yyparse;

echo : boolean :=false;

numnberý-oferrors : natural := 0;

end parser,

with adajokens, ada~goto, ada~shiftjreduce, adajlex, texLio, GLOBAL;
use ada..tokens, ada-goto, ada_shift~reduce, adajlex, text~io, GLOBAL;
package body parser is

procedure yyerror(s: in suring := "syntax error") is
begin
number_of errors := nwunberof~errors + 1;

put~jine(s);
end yyerror,

##%procedure...parse

end parser,

113

ADALEX.L

--ft Lexical input for LEX for LALR(I) Grammar for ANSI Ada */

Herman Fischer */
Litton Data Systems */

--/, March 26,1984 */
_-p. */

--/. Accompanies Public Domain YACC format Ada grammar */
../* */
..p. */
--/* */
--p. */
..p. */
../* */
--p. */

----p----- - ------ ----------- - ---------- ---------

%START IDENT Z

A [aAl
B fbB]
C (cC]
D [dD]
E [eE]
F [fFJ
G [gG]
H [hw
I [ill

K [kKJ
L [IL]
M [mM]
N [nN]
0 oOl
P [pPI
Q [qQ]
R [rR]
S [sS]
T [tTl
U [uU]
V [vV]
w [WWI
X [xX]
Y [yY]
Z [1Z]

114

(Al (B 1(01(Ri (Tj (ECHO; ENTER(Z); return(ABORTJ.OKEN); I
I Al(B)I(SI I ECHO; ENTER(Z; return(ABS-TOKEN);)
(A)(C)(C)jE)(PI(T) (ECHO; ENTER(Z); return(ACCEPT TOKEN;)
(Al (C)(C) (E (SI (Si (ECHO; ENTER(Z); return(ACCESSJOKEN);)
(A)(LI (LI (ECHO-. ENTER(Z; return(ALL-TOKEN); I
(A) (N) (D) (ECHO; ENTER(Z); return(ANDJOKEN);)
(Al (RI(RI (A) fYj (ECHO; ENTER(Z; remrn(ARRAY-TOKEN);)
(A)ITl (ECHO; ENTER(Z; retrn(ATJTOKEN);
(1B) (E) ~(GHI(N) (ECHO;, ENTER(Z); retumr(BEGINJTOKEN);)
(B) (0I) (D YI IECHO; ENTER(Z); return(BODYTOKEN);)
(C) (A)I(5)(E) (ECHO; ENTER(Z); retur(CASE_TOKEN);)
(C) (0) IN) (S)I(T) (A) (N) (T) (ECHO; ENTER(Z; return(CONSTANT-TOKEN);)I
(DI (El (CI (LIA) (R)I El (ECHO; ENTER(Z); return(DECLARE_TOKEN);)
(DI (ElIL) (A) (Y) (ECHO; ENTER(Z); return(DELAY-JOKEN);)
(D) (E) (L)I(T) I(A) (ECHO; ENTER(Z); return(DELTA-TOKEN);
I D)I I)IGIll) (T) (SI (ECHO; ENTER(Z)-: return(DIG1TSJTOKEN);)
(D) (0) (ECHO; ENTER(Z; retum(DOj1'KEN);)
(El (L)(SI(EI (ECHO; ENTER(Z); return(ELSETOKEN);)I
(El (L) (SI(11(F) (ECHO; ENTER(Z); retum(ELSIFTOKEN);)I
(E (N) (D) (ECHO; ENTER(Z);, retum(ENDJOKEN);)
(El (Ni(TI (RI (Y) (ECHO; ENTER(Z); return(ENTRYff.OKEN); I
(El (Xl I CIEl (P1(TI (11(01N) (ECHO; ENTER(Z); return(EXCEPTION TOKEN);)
(El (XI (l1T) (ECHO; ENTER(Z); retuni(EXIT_TOKEN);)
IF)IO)IR) (ECHO; ENTER(Z); return(FOR.TOKEN);)
IF)IIU)I(N) (C)I(TI (1)(0) IN) (ECHO; ENTER(Z); retum(FUNCflONJOKEN);I
IGI (E)(NI (El(RII) (C)Q (ECHO; ENTER(Z);, return(GENERICTOKEN);)
(GI (01(T)I () (ECHO; ENThR(Z); zetur(GOTO_TO1KEN);)
M 1(F) (ECHO; ENTER(Z); retur(IFTOKEN);)I
(1)(N) (ECHO; ENTER(Z); remur(INTOKEN);I
(11(5 (ECHO; ENTER(Z); return(ISJOKEN);)
ILIII) IM) (1(T) (El(DI (ECHO; ENTER(Z); return(LIMTED.YOKEN);)
(L)(O)IO)IPI (ECHO; ENTER(Z; return(LOOPTOK1EN);)
(MJI ()(D) (ECHO; ENTER(Z); return(MOD _TOKEN);)
(N)EI(E W) (ECHO; ENTER(Z); return(NEWfTOKEN); I
IN) (01 (T) (ECHO; ENTER(Z); retum(NOT-TOKEN);)
IN) (U) ILI (LI (ECHO; ENTER(Z; return(NULLL TOKEN);
(01(IF) (ECHO; ENTER(Z); return(OFJOKEN);)
(011R) (ECHO; ENTER(Z); return(OR TOKEN);)
(01 (TI(H)I(El(RIISI (ECHO; ENTER(Z); return(OTHERS-TOKEN);)
(01 (U)I(T) (ECHO; ENTER(Z); return(OUT...TOKEN);)

(P1(Al(C)(K ~ 61 El(ECHO; ENTER(Z); return(PACKAGEý_TOKEN);)
(P1 (R)I Al Gj M,. *~tAl (ECHO; ENTER(Z); return(PRAGMA TOKEN); I
(P) ~(R)(1(V) (A)(TI (El (ECHO; ENTER(Z); return(PRJVAT'ETOKEN);)
(P1 (RI (0(C) (E (D) (Uf) (I(El (ECHO; ENTER(Z); return(PROCEDURE TOKEN);)
(R)J)I (l(1111 El (ECHO; ENTER(Z); return(RAISE...TOKEN);)
(RI (A) (N) (GI (E) (ECHO; ENTER(Z); retuni(RANGE'ITOKEN);I)
(RI (El (C)(OI(RI (DI (ECHO; ENTER(Z); return(RECORDTOKEN);J
(R) (E) (M) (ECHO; ENTER(Z; return(REM-TOKEN);
(RI (E) (Njj) (l MI(EI)(I (ECHO; ENTER(Z); return(RENAMES_TOKCEN);)
(RI (El(TI (U)(R)I(Ni (ECHO; ENTER(Z); return(RETURNJTOKEN);)
(R)(E)(V)(E)(R)(S)jE) (ECHO; ENTER(Z); return(REVERSE_TOKEN);,)

115

(SI (El (LIfE) (CT) T (ECHO; ENTER(Z); retur(SELECT-.TOKEN.);
(SI(E)(P) (Al RI (A)IT) (E) (ECHO*, ENTER(Z); return(SEPARATETOKIEN);j)
(SjtU) (B)(Tl(YH(PI(EI (ECHO; ENTER(Z); return(SUBTYPE-TOKEN);)
(TI (A)(S)(K) (ECHO;. ENTERCZ);, retuni(TASKTOKEN);)
jTIIE)JR) (MfI (1N) (A) (THE) (ECHO; ENTER(Z); reurn(TERMINATE_TOKEN).)
(T) (H) (E) (N) (ECHO; ENTER.(Z); retumrn(HENJOKEN);)
(TI(Y)(P)(E) (ECHO; ENTER(Z; rezun(rYPE-.TOKEN);)
(U) (SI (E) (ECHO; ENTER(Z); return(USE..WTKEN);)
(W) (H) (E) (N) (ECHO; ENTER(Z); returnWHlEN TOKEN);)
(W)I(H) (1(L) (E) (ECHO; ENTER(Z); return(WHILE.TOKEN);
(Wf)(TIHT)(H (ECHO; ENTER(Z; retur(W1TH..TOKEN); I
fX) (0)1(R) (ECHO; ENTER(Z); retum(XORJTOKEN);)

=" (ECHO; ENTER(Z); retun(ARROW);)
"2'(ECHO; ENTER(Z); return(DOUBLEDOWh);
"" (ECHO; ENTER(Z); retum(DOUBLESTAR); I
." (ECHO; ENTER(Z);, retum(ASSIGNMENT);)

"/,(ECHO; ENTER(Z); return(INEQUAMlY); I
"" (ECHO; ENTER(Z); mtun(GREATERTHAN-OR.EQUAL);)
"c" (ECHO; ENTER(Z); retUniLSSTHAN-OR.EQUAL);
" " (ECHO; ENTER(Z; return(LEFT -LABELBRACKET);
"" (ECHO; ENTER(Z); return(RIGMT_LABELBRACKET);)
"o" (ECHO; ENTER(Z); remun(BOX);)
"" (ECHO; ENTER(Z); retmC(&'); I

"C'(ECHO; ENTER(Z); return('(');)
")"(ECHO; ENTER(IDENT); return(')');)
""(ECHO; ENTERCZ); return('*');)
"" (ECHO; ENTER(Z); return('+');
","(ECHO; ENTER(Z); return(',');)
"-"(ECHO;, ENTER(Z); return('-');)
"."(ECHO; ENTER(Z); return('.');)
"P(ECHO,, ENTER(Z); return(/f);)
":"(ECHO; ENTER(Z); return(':');
";"(ECHO; ENTER(Z); return(';');I

"e' (ECHO; ENTER(Z);, return('<');)
(ECHO; ENTERCZ); return('=');

"5" (ECHO; ENTER(Z); return('>');)
"r" (ECHO; ENTER(Z); return(TI); I
<IDENT>\' (ECHO; ENTER(Z); return("...

tazAZf-ýAZ-] (ECHO; ENTER(IDENT);return(IDENTFEMR); I

ECHO; ENTER(Z);
return(REAIL..LIERAL); I

[O-91[O-91*#[O-9a-fA-FI+([.J(O-9a-fA-Fj+)?#([Eell--,-?fO-91+)?
ECHO; ENTER(Z);
return(JNTEGELITERAL);I

\"(A1*~"")*S"(ECHO; ENTER(Z); return(STRINGLrTERAL);)

<Z>\'((A']K'\')\ (ECHO; ENTER(Z); return(CHARACTERLITERAL);)1

116

-. ooking for an elsif on aline by itself

A[It*'ejf[r[N~ft (ECHO;
ENTER(Z);
--putjine C' just found a elsif on a line by itself")
if GLOBAL.COUNTCLARIFICATION

(GLOBAL.RECORDFLAGSY.PANEL 10.LINE_1 1) then
--put (" exec start")
--put C' exec end")
*-newjline;
GLOBAL.FLAGS-ARRAY (GLOBAL.STMTTYPE'val (0), 1): TRUE;
GLOBAL.FLAGSARRAY (GLOBAL.STMTTYPE'val (0). 2): TRUE;
GLOBAL.ADD_TOARRY;

else
null;

end if;
finenum;
return(ELSIFJTOKEN);

-- Looking for an "else" on a line by itself

A[Nt*"ebe"[14%f j ECHO;
ENTER(Z);
--putjine (" just found a else on a line by itself")
if GLOBAL.COUNLCLARIFICATION

(GLOBAL.RECORDFLAGS-F.PANEL1O.LINE_10) then
--put (" exec start';
--put (" exec end)

--new-line;
GLOBAL.FLAGS-ARRAY (GLOBALMSMT-TYPE'val (0), 1): TRUE;
GLOBAL.FLAGS...ARRAY (GLOBAL.STMTTYPE'val (0), 2): TRUE;
GLOBAL.ADDTOARRAY;

else
null;

end if;,
linenum;
return(ELSE,_OKEN);

-- Looking for a "then" on a line by itself

A[14I*"then"[1QIG t ECHO;
ENTER(Z);
--putjine C' just found a then on a line by itself")
if GLOBAL.COUNTCLARIFICATION

(GLOBAL.RECORDFLAGS..F.PANELIO.LINE-1O) then
--put (" exec start)

--put (" exec end';

117

GLOBAL.FLAGSARRAY (GLOBALShIMT-YPE'val (0), 1): TRUE;
GLOBAL FLAGSARRY (GLOBAL.SMTh(_TYPE'val (0), 2): TRUE;
GLOBAL.ADDTO_-ARRAY;

else
null;

end if-,
linenum;
return(THEN-TOKEN);)

-Looking for an "others" on a line by itself

A['*]*'other"[IA]ft I ECHO;
ENTERCZ);
-putJine, ("just found a others on a line by itself)

if GLOBAL.COUINT-CLAREFICATION
(GL.OBAL.RECORDJFLAGS..Y.PANEL1O.LINE-1O) then

--put (" exec start ");
--put (" exec end 1
newjline;
GLOBAL.FLAGS...RRY (GLOBAL.STMTTYPE'val (0), 1): TRUE;
GLOBAL.FLAGS_.ARRAY (GLOBAL.STMT_-TYPE'val (0), 2): TRUE;
GLOBAL.ADDJQARRAY;

else
null;

end if-.
linenum;
return(OTHERSJOKEN);)

- Looking for a banner comment of just hyphens "--,must be longer
- than two initial hypens, otherwise it is a empty comment.

A(\~*""."*[\]%I ECHO;
-- put~line (" found a banner comment of just hyphens ");
GLOBAL.FLAGSARRAY (GLOBAL.STMT_-TYPE'val (5), 1): TRUE;
GLOBAL.FLAGSARRAY (GLOBAL.STMTl_TYPE'val (5).,2): TRUE;
GLOBAL.ADDý_TOARRAY;
linenum; I

-Checking for empty comments on a line by themselves
A[\Qft]' I ECHO;

GLOBAL.FLAGS-.ARRAY (GLOBAL.STMT_-TYPE'val (6), 1): TRUE;
GLOAL.FLAGS...ARRAY (GLOBAL.STMTTYPE'val (6), 2):=TRUE;
GLOBAL.ADDTOARRAY;
linenum;

118

-Checking for blank lines
A[11410 I ECHO;

GLOBAL.FLAGSARRAY (GLOBAL.STMTTYPE'val (7),!1): TRUE;
GLOBALJFhAGSARRY (GLOBAL.STMTTYPE'val (7), 1): TRUE;
GLOBALADD_.TOARRAY;
linenum;)

NO* ECHO; -- ignore spaces and tabs

"-*)ro~grmzmed" I ECHO;
GLOBAL.SPECIALCOMM4ENT: TRUE;
GLOBAL.CURRENLýSE1TINGS.SECONIDATrRIBUTE:

GLOBAL.HOWYPRODUCED'val (0); 1

"-~*_Generated" I ECHO;
GLOBAL.SPECIAL-COMM4ENT: TRUE;
GLOBAL.CURRENTSETrINGS.SECONDATTRIBUTE:

GLOBAL.HOWPRODIJCED'val (1);)

* Covered" I ECHO;
GLOBALSPECIALSOMM4ENT: TRUE;
GLOBAL.CURRENT_-SETrINGS.SECONDATTRIBUTE:

GLOBAL.HOWPRODUCED'val (2);)

'.C*opied" I ECHO;
GLOBAL.CURREN'LSETrINGS.SECONDATTRBUTE:

GLOBAL.HOW_PRODUCED'val (3);
GLOBAL.SPECIAk..COMMENT: TRUE;)

"-*-Modified" I ECHO;
GLOBAL.CURRENT_-SETrINGS.SECONDATITRBUTE:

GLOBAL.HOWý_PRODUCED'val (4);
GLOBAL.SPECIAL._OMMAENT: TRUE;)

-- User will need to follow the following examples if they want to include
-- removed code in their counts
--*-Removed Executables => 45, Declarations => 4. Pragmas => 0

-- *-.~Removed Exec => 45, Dec => 4, Prag => 0
-- ~~ --Rmv=> 45, D=> 4, P=> 0

64* Removed ".* I ECHO;
GLOBAL.CLRRENTSETrINGS.SECONDATIRIBUTE:

GLOBAL.HOWýPRODUCED'val (5);
GLOBAL.SPEClALCOMfMENT: TRUE;
GLOBAL.SPEC..COMMfENTLENGTH: adajlex_dfa.yytext'length;

GLOBAL.SPECCONMMENT _STRING (1.. GLOBAL.SPECCOMMIENTLENGTH)
adalex-dfa~yytext;

GLOBAL.PARSE,_SPECIALCOMMENT (GLOBAL.REMOVEDNUM,
GLOBAL.SPEC_CONMMNTLENGTH,
GLOBAL.SPECCOMMENTý_STRING);)

119

".--New..york"4 ECHO;
GLOBAL.CURRENT_SETrINGS.TIHRDý_ATrRIBUTE: GLOBAL .ORGIN'val

(0);
GLOBAL.SPECIAL-COMMENT: TRUE;)

".-*_Previous,_version" J ECHO,
GLOBAL.CURRENLýSENMGS.1RD...ATTREBUTE: GLOB AL.ORGIN'val

(1);
GLOBAL.SPECIAL...COMMENT: TRUE;)

'- CO~" I ECHO;,
GLOBAL.CURRENTSE1TnNGS.THIRDATTRIBUTE: GLOBAL .ORGIN'val

(2);
GLOBAL.SPECIAL_COMMIENT := TRUE; I

".-* _GFS" (ECHO;
GLOBAL.CURRENLSETTINGS.THIRD_ATTRIBUTE: GLOB AL.ORGIN'val

(3);
GLOBAL.SPECLALCOMMENT: TRUE:)

"-*_Annother..product" I ECHO;
GLOBAL.CURRENT_SETTINGS.THIRDAlTRIBUTE: GLOBAL ORGIN'val

(4);
GLOBAL.SPECIALCOMMIENT: TRUE;)I

"-*.VSL....pt-library" I ECHO;
GLOBAL.CUJRRBNLýSETHNGS.THIRDATTRIUTE: GLOBAL.ORGIN'val

(5);
GLOBAL.SPECIAL..-COMNMNT: TRUE;)

".-* VSOS-orý-utility" I ECHO;,
GLOBAL.CURRENTSETTINGS.THIRDATTRIBUTE: GLOB AL .ORGIN'val

(6);
GLOBAL.SPECIAL.-COMNMNT: TRUE;)

"- Amodified-spt-lib" I ECHO;
GLOBAL.CURRENTSETrINGS.THIRDATTRIUTE: GLQBAL.ORGIN'val

(7);
OLOBAL.SPECIAL_COMIMENT: TRUE;)

"-*_Other .comm-lib" I ECHO;
GLOBAL.CURRBNTSE1TrNGS.THIRD_ATTRIUTE -=GLOB AL.ORGIN'val

GLOBAL.SPECIALCOMMENT: TRUE; I

"a _Reusej-ibmary" f ECHO;
GLOBAL.CURRENTSETTTNGS.rHIRDATTRIBUTE: GLOB AL.ORGIN'val

(9);
GLOBAL.SPECIAL._COMMENT: TRUE;)

120

"_* Otherý_Softwarescomponent" (ECHO;
GLOBAL.CURRENTý_SE¶ITINGS.THIRDAITrRIB3UTE:

GLOBAL.ORGIN'val (10);
GLOBAL.SPECIAL ,COMfMENT: TRUE;)

"j*Prt..ofproduct" I ECHO;
GLOBAL.CURRENT..SE1TINGS.FOURTH_ATrRLrrU:=

GLOBAL.USAGE'val (0);
GLOBAL.SPECLALCOMMENT: TRUE;)

"-*_Extern~ajo.product" I ECHO;
GLOBAL.CURRENT-SETrINGS.FOURTHATTRIBUTE:

GLOBAL.USAGE'val (1);
GLOBAL .SPECIAL..COMMENT: TRUE;)

-- To include an estimated or planned value for executable, declarations, and or pragmas, the
-- user will need to follow the following examples
-- * -- Estimated Executables => 2245, Declarations => 400, Pragmas => 14

__*_-Estimated Exec => 2245, Dec => 400, Prag => 14
*--*_ Estimated E=> 2245, D=> 400, P=> 14

¶..*Estimated or j~anned . IECHO;
GLOBAL.CURRENTý_SETITINGS.FIFH_AlTRBUTE:

GLOBAL.DEVELOPMENT_-STATUS'val (0);
GLOB A' .S ECIALCOMMEFNT: TRUE;
GLOBAL.SPEC_COMMEfNTj_LENGTH: ada_lex_dfa~yytext'length;.
GLO'iAL.SPECQ.COMMIENTSTRING (1..

GLOBAL.SPECCOMM4ENT -LENGT`H): ada~Lex_dfayytext;
GLOBAL.PARSE -SPECIALCOMMENT (GLOBAL.ESTIMATEDNUM,

GLOBAL.SPE ýCONMMNT LENGTH,
GLOBAL.SPEQCOMMEfNTSTRING);)

"-..*-.Designed" I ECHO;
GLOBAL.CURRENT_-SEThINGSELFTHLATTRIBUTE:

GLOBAL.DEVELOPMIENTSTATLJS'val (1);
GLOBAL.SPECIALCOMMENT: TRUE; I

"-*_Coded" (ECHO;
GLOBAL.CURRENTSETrINGS.FIFTH ATTRIBUTE-:

GLOBAL.DEVELOPMENTSTATUS'val (2);
GLOBAL.SPECIAL,_COMMjENT: TRUE;)

"-*. nit~tsts~completed" (ECHO;
GLOBAL.CUJRRENT-SETTHNGS~FIUHAlTRIBUTE:

GLOBAL.DEVELOPMENT-STATLJS'val (3);
GLOBAL.SPECIALCOMMENT: TRUE;)

"4-*s Integrated into components" (ECHO;
GLOBAL.CURRENT-SE1TINGS.FIFTHATTRIUTE:

GLOBAL.DEVELOPMENT_-STATIJS'val (4);
GLOBAL.SPECIALCOMMENT: TRUE;)

121

"-*_Testjmadinessjyev~completed" I ECHO;
GLOBAL.CURRENT-SETI'INGS.JFIFTHA1TRIBUTE:=

GLOBAL.DEVELOPMENSTA11JS'val (5);
GLOBAL-SPECIALCOMMENT: TRUE;)

"-A.CSClscompleted" I ECHO-,
GLOBAL.CURRENT-SETrINGS.FIFTHATRI'BUT-:

OLOBALDEVELOPMIENT_STATUS val (6);
GLOBAL.SPECIAL.SCOMMENT: TRUE;

"~-*_Syv'em_testsý-completed" I ECHO;
GLOBAL.CURRENT-SE1TINGS.FIFTHAITR1BUTE:

GLOBAL.DEVELOPMENT_-STATUS val (7);
GLOBAL.SPECIAL-COMMENT: TRUE;

-- Checking for comments on their own line

A[t]*... *\n (ECHO;
GLOBAL.THIR&CHAR: ada_lex_dfa.yyzext (3);
GLO)BAL.SPECCOMMENT.LENGTH: ada~lexjffa-yytext'length;
GLOBAL.SPEC_COMMENTSTRING (1..

GLOBAL.SPEC-COMMENT1ýLENGTH):= ada-lex-clfa~yytext;
GLOBAL.DETERMINEJTYPEý_COMMIENT

(GLOBALSPEC...COMMENLýLENGTH,
GLOBAL.THIRDCHAR,
GLOBAL.SPECCOMMfENTSTRING);

GLOBAL.ADDTO_-ARRAY;
linenum;

-- Looking for a comment on a line with source code.
-- Conditions:

Actions:

I ECHO;
if GLOBAL.EXECLEVEL > 0 or

GLOBAL.DECLEVEL > 0 or
GLOBAL.PRAGMALEVEL > 0 then

GLOBALFLAGS-ARRAY (GLOBAL.STMTTYPE'val (4), 1) := TRUE;
GLOBAL.FLAGS.ARRAY (GLOBAL.STMTJTYPE'val (4), 2) := TRUE;

else
null;

end if;, I

I ECHO;
textjo.putjine("?? lexical error" & ada-lex_dfa~yytext & "??");

num_errors := num~efrors + 1;)

122

(ECHO;
GLOBAL.ADDTOARRAY;
linenwn;)

with TEXTJO,
ada-tokens,
GLOBAL,
ada~lex-dfa,
TAE;

use ada-tokens;

package ada~lex is

lines positive: 1;
num-errors :natural= 0;

procedure DECREASEDECLEVEL;

procedure linenum;

function yylex return token;

end adalex;

package body ada~lex is

procedure DECREASE,_DECLEVEL is
begin

GLOBAL.DECLEVEL: 0;
end DECREASEDECLEVEL;

procedure linenum is
begin
textjo.put(integer'image(lines) &":)
lines: lines + 1;

end linenum;

end adajlex;

123

GLOBALS.A

-- * TAE Plus Code Generator version V5.1
l***ie: globals.a

-- Generated: Apr 15 10:49:42 1993

-- * Global - Package SPEC

with X.Windows;
with Text_10;
with TAE;
use TAE;
package Global is

--I PURPOSE:
--I This package is automatically "with"ed in to each panel package body.
-I You can insert global variables here.

--I INITIALIZATION EXCEPTIONS: (none)
--I
--I NOTES: (none)
--I
--I REGENERATED:
--I This file is generated only once.
--I
--I CHANGE LOG:
--I 15-Apr-93 TAE Generated

--*_Programmed

-- (+) begin added code

type MY_VALUE is array (1..1) of String (1..TAE.Tae_Taeconf.STRINGSIZE);

SPECIALCOMMENT,
COMMENT_FLAG : boolean := false;

SPEC_COMMIENTLENGTH,
EXECLEVEL,
DECLEVEL,
PRAGMALEVEL : integer := 0;

REMOVED._NUM : integer := -1;
ESTIMATED_NJM : integer := 1:

THIRDCHAR : character :=' ;

124

SPEQCCOMMENTLSTRING : string (I .. 1024):= (others =>'');

OUT_FILETYPE text io.ffletype;
F textio.filetype;
FILE_LIST_NAME : string (1.. 1024) := (others =>');

type STMTTYPE is (EXECUTABLE, DECLARATIONS, COMPILER_DIRECTIVES.
CMTS_ON_OWN_LINE, CMTS_WITH_SRCCODE,
BANNERSNON_BLANKSPACERS, BLANKEMPTYCMTS,
BLANKLINES);

type HOW_PRODUCED is (PROGRAMMED, GENERATED, COVERETED,
COPIED, MODIFIED, REMOVED);

type ORJN is (NEW_WORK, PREVIOUSYERSION, COTS, GFS, ANNOTHERPRODUCT,
VENDORSUPPLIEDSPTLIB, VENDORKSUPPLIEDOS,
LOCAL_SUPPLIED_LI, COMMERCIALLIB, REUSELIB,
OTHERCOMPONENT LIB);

type USAGE is (PRIMARY_PRODUCT, EXTERNAL);

type DEVELOPMENTSTATUS is (ESTIMATED, DESIGNED, CODED, UNITTESTDONE,
INTEGRATED, TESTREADINESSREVIEW,
CSCICOMPLETED, SYSTEMTESTSCOMPLETED);

type COUNTARRAY_TYPE is array (STMT_TYPE, HOW-PRODUCED,

ORGIN, USAGE, DEVELOPMENTSTATUS) of natural;

type FLAGSTYPEARRAY is array (STMTTYPE, L..2) of boolean;

type PRIORITYTYPEARRAY is array (1..8) of STMTTYPE;

type ORDEROFPRECEDENCE is range 1..8;

type CURRENT_SETITINGSTYPE is
record
FIRSTATTRIBUTE STMTTYPE :=EXECUTABLE;
SECOND_ATFRIBUTE : HOW-PRODUCED :=PROGRAMMED;
THIRD_ATTRIBUTE ORGIN NEW_WORK;
FOURTH_A¶ITRIBUTE : USAGE := PRIMARYPRODUCT;
FIFTH_ATTRIBUTE DEVELOPMENT STATUS:= SYSTEMTESTSCOMPLETED;

end record;

type STMT_TOTALSTYPE is
record

EXEC_TOTAL,
DECTOTAL,
PRAGMATOTAL,
CMTS_ONOWN_TOTAL,
CMTS_W_SRCTOTAL,

125

BANNERCMTSTOTAL,
EMP'rY-CMTSJTOTAL,
BLANKLINESJOTAL natural:=0;

end record;

tpex HOW_,RODUCEDJTYPE is
record

PROGRAMMIEDTOTAL.
GENERATED-TOTAL.
CON VERTEDffOTAL,
COPIEDTOTAL.
MODI~fiEDTOTAL,
REMOVEDTOTAL natural: 0;

end record;

ypei ORGIN_TYPE is
record

NEW_ýWORIQTOTAL,
PREVIOUS_VERSIONTOTAL,
COTS_TOTAL,
GFS_TOTAL,
ANNOTHIERPRODUCTILTOTAL,
VSSPT.LIBffOTAL,
VS_SPTOSTOTAL,
LOCAL_,SUPPUIEDLIBJTOTAL,
COMMERCIALLIETOTAL,
REUSE_LIETOTAL,
OTHER-COMPONENLITOTAL :natural: 0;

end record;

typeUSAGE-JYPE is
record
PRIMARYPRODUCTJOTAL,
EXTERNAL_,TOTAL natural: 0;

end record;

type DEVELOPMIENTSTATUS_-TYPE is
record
ESTIMATEDTOTAL,
DESIGNEDTOTAL,
CODEDJTOTAL,
UNI'TTESTý_DONELTOTAL.
INTEGRATEDLTOTAL,
TESTjREADINESS_REVIEWTfOTAL,
CSCICOMPLETEDJOTAL,
SYSTENLTESTý_TOTAL natural: 0;

end record;

zyp COUNLTOTALS_TYPE is
record

STMTNUMS STMTTOTALSTYPE:.

126

PRODUCEDNUMS HOWPRODUCED..TYPE;,
ORG -N!UMS ORGINTYPE;
USAGE_-NUMS USAGETYPE;
DEVELOPEDNUMS DEVELOPMIENTSTATUSTYPE;

end record;

type paneL2 is
record

repork-a boolean :=true;
repon-.b boolean= false;
reporý-c boolean: false;
reportd. boolean :false;
report-e boolean: false;
report-f boolean :=false;
next-scm boolean: false;
out..flle.name my..yalue;
in file-name my..yalue;
requestor my_value;
repoit-heading my..yalue;

end record;

type panel - is
record

line_1 boolean true;
line_-3 boolean true;
line_4 boolean: tu-te;
line_-6 boolean :=false;
line_-7 boolean: false;
line_-8 :boolean false;
line_9 :boolean false;
line_10 boolean: false;
line _1_mt TAB.TAEINT: 1;
line_3_mnt TAE.TAEINT: 2;
line_4_mnt TAB.TABINT:=3;
line_6_mt TAE.TAEINT: =4;
liney_7_t TAE.TAEINT: 5;
line,_8_int TAE.TABINT := 6;
line_9_mt TAB.TAEINT: 7;
line_-10_mnt TAE.TAEINT: 8;
def~data.-array boolean :=false;

end record;

type paneL4 is
record

line_1 : boolean true,
line_2 :boolean true;
line_3 :boolean true;
line__4 :boolean true;,
line_5 :boolean: true;
line_6 :boolean := false;

127

defjdtazaarray boolean: false;
end record;

typ panel-S is
record
line_1: boolean true;
line_3 :boolean :=true;
lineL_4 :boolean :=true;
line....: boolean true;
line_6i boolean true;
linte_: boolean false;
line8 :boolean false;
line_9 :boolean= true;
lineJO boolean true;
line_1I boolean true;
line_12 boolean true;
deLdataarray boolean: false;

end record;

type paneL-6 is
record
linejI boolean :=true;
line-2 :boolean: false;
DEL.OPTION :MY-VALUE;
defldata~amy boolean: false;

end record;

typ panel-9 is
record

liniej1 boolea false;
line_.2 :boolean false;
linej boolea fase;
line_-4 :boolean Uase;
line_.5 :boolean: false;
line_6i boolean false;
line_7 :boolean false;
fine..8 :boolean true;
defdata~array boolean: false;

end record;

typepaneLIO is
record

line_1l boolean:= true;
line_-2 :boolean :=true;
fineJ :. boolean :true;
line_4 :boolean: true;,
line_5 :boolean :=true;

128

line.6 boolean true;
line_7j boolean true;
line_8 boolean: true;
line_9 boolean true;
line_10 boolean true;
line-I 1 boolean true;
lineL12 boolean true;
lineJ3 boolean true;
line lijnt TAE.TAEINT: 1;
lineý_2_mnt TAE.TAEINT:=l1;
line_3_mnt TAE.TAEINT: 3;
line_-4_mt TAE.TAEMNT 1;
line,_5_mt TAE.TAEINT: 3;
line,_jnt TAE.TAEINT: 1;
line,_7_int TAE.TAEINT:= 1;
line_8_mt TAE.TAEINT: 1;
line_9_mnt TAE.TAEMN:= 3;
line_10_mt TAE.TAEINT: 1;
line I _iint TAE.TAEINT: 1;
line_12_mit TAE.TAEINT: 3;
line,_13_mnt TAE.TAEINT: 1;
def data-array boolean:= false;

end record;

type paneL1I is
record
lineI : boolean true;
lineý_2 :boolean true;
1ine_3 :boolean true;
line_4 :boolean true;
line_5 :boolean true;
line_6 :boolean true;
line _1_mt TAE.TAEINT: 3;
line_2_mt TAE.TAEINT:= 1;
line_3_irn TAB.TAEINT: 3;
lineý_4_hit TAE.TAEINT: 1;
line_5_mt TAE.TAEINT: 3;
line_6_nt TAE.TAEINT: =4;

end record;

type flags is
record

panel2 panel_2;
panel3 panel...3;
panel4 panel_4;
panelS panel_-5;
panel6 panel-6;
panel9 panel_-9;
panellO panelijO1;
panell panel_1 1;

end record;

129

record jiags flags;
record jfags.A :flags;
record-flags..B :flags;
recoud-flags....C flags;
record-flagsj)D flags;
recordjlags.... : flags;
record flags....F flags;

CouNT-.ARRAY....: COUNT.ARRAY-TYPE: (others => (others =>
(others => (others =>
(others => 0)))));

COUNL-ARRAYB :COUNTARRAYTYPE: (others => (others =>
(others => (others =>
(others => 0)))));

COLYNT..ARRAy..C :COUNT_ARRAY_TYPE: (others => (others =>
(others => (others =>
(others => 0)))));

COUNTARRAY-D :COUNT-ARRAYTYPE: (others => (others =>
(others => (others =>
(others => 0)))));

COUNT_.ARRAY..E COUNT_ARRAYTYPE: (others => (others =>
(others => (others =>
(others => 0)))));

COUNTý_ARRAYF COUNT_ARRAY TYPE: koUJ.ers => (others =>
(others => (others =>
(others => 0)))));

FLAGSARRAY FLAGS_...YPE..ARRAY;
PRIORITYARRAYAE :PRIORITYTYPEARRAY;
PRIORITYARRAYF PRIORITYTYPEARRAY;

CURRENTý_SEITINGS CURRENT_SETfINGS...TYPE;

COUNT-TOTALS COUNTTOTALSTYPE;
COUNTTOTALSA COUNTTOTALS-JYPE;
COUNTJO0TALSB COUNT_TOTALSJYYPE;
COUNT-TOTALSC COUNL-TOTALS-TYPE;
COUNT-TOTALSD) COUNT_-TOTALSTjYPE;
COUNrjTJOTALSE COUNT_TOTALSYPE;
COUNTJTOTALSF COUNTTOTALSTYPE;

TOTALCOUNTED-A,
TOTAL_-COUNTEDB.
TOTALCOUNTEILC,
TOTAL_-COUNTED_.D,

130

TOTAL_-COUNTEDE.
TOTALCOUNTEDF :natural := 0;

-*()end added code

G*_enerated

package Taefloat_10 is new TexLIO.FloaLjO (TAE.Taefloat);

DefauiLt.Displayid: X-Windows.Display;

-- procedure CHECKFLAG_SETTINGS;

ApplicationDone -- Subprogram SPEC

function Application_Done
return Boolean;

--I PURPOSE:
--I This function returns true if a "quit" event handler has called
--I Set_.ApplicationDone, otherwise it returns false.
--I
--I EXCEPTIONS: (none)
--I
--I NOTES: (none)

SeLApplicazionDone -- Subprogram SPEC

procedure SeLApplicationjDone;

--I PURPOSE:
--I This procedure can be used by an event handier, typically a "quit"

131

--I button, to signal the end of the application.
-- 1

--I EXCEPTIONS: (none)
-I
-I NOTES: (none)

. o.o..,.........

Switchflag - Subprogram SPEC

..... °.*.°O.6...................O'..*..*.°°°,.*.°.............°°.......

function SwitchFlag (FLAG_IN: in boolean) return boolean;

--I PURPOSE:
-I This procedure will be used when the user changes the default settings
--I for the custom format report.
--I
-I EXCEPTIONS: (none)
--I
--I NOTES: (none)

function CHECK_REPORT_A_E return boolean;

function CHECK_REPORT-F return boolean;

function COUNTCLARIFICATION (BOOLEANJN : in BOOLEAN) return BOOLEAN;
--I
-- |
--I

procedure OPEN_OUT_FILE;

procedure CLOSEOUTFILE;

132

function PTND.LENGTH (FILEUST: in GLOB AL-MYVALUE) return integer:,

Procedure ADD-TO-ARRAY;

procedure COUNT -LINE (IN-RECORD : in CUJRRENT_SElTINGSTYPE;
ARRAYTYPE: in out COUNTARRAY TYPE;
ADDJ'IUMBER: in natural: 1);

procedure DETERMINEWHICH_ARRAY (INRECORD :in
CURREK-SETTINGSTYE;

ADDNUMBER:- in natural: 1)

procedure PARSE_.SPECIALCOMMIENT (INNUJM : in integer,
IN-LENGTH: in integer;
INSTIVNG: in string);

Procedure DETERNMINETYPE...OMMENT (1N.3.ANNERLENGTH :in out integer;
INBANNERCHAR : in out character,
INBANNER_STRING A n out STRING);

end Global;

133

GLOBALB.A

-- * TAE Plus Code Generator version V5.1
- * File: globab.a

- Generated: Apr 15 10.49:42 1993

- *Global - Package BODY

with TEXTJIO;
use TEXIJO;
package body Global is

--I NOTES: (none)
-4
--I REGENERATED:
-I This file is generated only once.
--I
-I CHANGE LOG:
-I 15-Apr-93 TAE Generated

-*_Programmed

package TAEBINTEGERIN_OUT is new integerio (TAE.TAEINT);
use TABINTEGER_IN_OUT;

package INTEGER_IN_OUT is new integer~jo (integer);
use INTEGER_IN_OUT;

package ENUMERATIONJIN_OUT is new ENUMERATIONIO (STMTJ_TYPE);
use ENUMERATION_IN_OUT;

--*_Generated

IsApplicationDone : Boolean := FALSE;

- ApplicationDone -- Subprogram BODY

S.°.. ,.. •.. °.°.. .. °*. °°.°.......°......o.,.°°. °.. ,°...

function ApplicationDone
return Boolean is

-I NOTES: (none)

134

begin - ApplicationDone

return is...Application Done;

end Application_.Done;

SetApplicationkDone -- Subprogram BODY

procedure SeL-Application-Done is

--I NOTES: (none)

begin -- SeLApplicationDone

Is...Application-Done := TRUE;

end SetLApplicationj~one;

-*-Programmed

Switch-flag -- Subprogram SPEC

function SwitchFlag (FLAGIN: in boolean) return boolean is

--I PURPOSE:
--I This procedure will be used when the user changes the default settings
--I for the custom format report.

--I EXCEPTIONS: (none)

--I NOTES: (none)

TEMPFLAG :boolean;

begin
if FLAGON then

TEMIP-FLAG :=false;
else
TEMPFLAG

:=true;13

end if-,

return TEMPFLAG;

end Switch-Flag;

function CHECK_REPORT...AE return boolean is

BOOLEAN.YLAG : boolean: FALSE;

begin

if RECORDFLAGSPANEL2.REPORTA or
RECORD-FLAGS.PANEL2.R.EPORTB or
RECORD.JLAGS.PANEL2.REPORTý_C or
RECORD_FLAGS.PANEL2.REPORTý_D or
RECORD-JLAGS.PANEL2.REPORT_-E then

BOOLEANYLAG := TRUE;
end if;

return BOOLEANJ..LAG;

end CBECKRBPORL&_E;

function CBECK_.REPORTý_F return boolean is

BOOLEAN-FLAG :boolean.:= FALSE;

begin

if RECORD_-FLAGS.PANEL2.REPORTF then
BOOLEANFLAG: TRUE;

end if-,

return BOOLEANJLAG;

end CHECK_REPORTY_;

function COUNTý_STMTJTYPE (S :in STMTJ-YPE;
INCOUNTARRAY: in COUTNT-ARRAYffYPE) return integer is

TEMvPCOUINT :integer := 0;

136

begin

for H in HOWPRODUCED'FIRST .. HOWPRODUCED'LAST loop
for 0 in ORGIN'FIRST .. ORGIN'LAST loop

for U in USAGE'FIRST .. USAGE'LAST loop
for D in DEVELOPMENTSTATUS'FIRST.. DEVELOPMENT_STATUS 'LAST loop
TEMPSCOUNT:= TEMPCOUNT + IN_COUNTARRAY (S, H, 0, U, D);

end loop;
end loop;

end loop;
end loop;

return TEMPCOUNT;

end COUNTSTMTTYPE;

function COUNT_HOW_PRODUCED (H in HOWyPRODUCED;

INCOUNT_ARRAY: in COUNTARRAY_TYPE) return integer is

TEMP_COUNT : integer := 0;

begin

for S in STMTTYPE'FIRST.. STMTJTYPE'LAST loop
for 0 in ORGIN'FIRST .. ORGIN'LAST loop

for U in USAGE'FIRST. USAGE'LAST loop
for D in DEVELOPMENTSTATUS'FIRST.. DEVELOPMENTSTATUS 'LAST loop

TEMP_COUNT := TEMP_COUNT + IN_COUNTARRAY (S, H, 0, U, D);
end loop;

end loop;
end loop;

end loop;

return TEMP_COUNT;

end COUNTHOW_PRODUCED;

function COUNT_ORGIN (0 in ORGIN;

IN_COUNTARRAY: in COUNT_ARRAY_TYPE) return integer is

TEMP-COUNT : integer := 0;

begin

for S in STMTTYPE'FIRST.. STMTTYPE'LAST loop

for H in HOWPRODUCED'FIRST.. HOWPRODUCED'LAST loop
for U in USAGE'FIRST .. USAGE'LAST loop

137

for D in DEVIELOPM-ENTSTATUS 'FIRST.. DEVELOPMENTSTATUST'AST loop
TEMPý_COUNT := TEMPCOUNT + INCOUNTARRAY (S, H, 0, U, D);

end loop;
end loop;

end loop;
end loop;

return TEMPCOUNT;

end COUNTORGIN;

function COUNTUSAGE (U : in USAGE;

INCOUNTý_ARRAY: in COUNT_ARRAYTYPE) return integer is

TEMPCOUNT : integer := 0;

begin

for S in STITTYPE'F[RST .. STMIT_-TYPE-LAST loop
for H in HOWPRODUCED'FIRST.. HOW_PRODUCED'LAST loop

for 0 in ORGIN'FIRST.. ORGIN'LAST loop
for D in DEVELOPMENTSTATUS 'FIRST.. DEVELOPMENLýSTATUST'AST loop
TEMP_COUNT := TEMP_COUNT + IN_COUNTARRAY (S, H, 0, U. D);

end loop;,
end loop;

end loop;
end loop;

return TEMPý_COUNT;

end COUNT_USAGE;

function COUNT_DEVELOPMENT_STATUS (D in DEVELOPMENTSTATUS;

INCOUNTARRAY: in COUNTARRAYJTYPE) return integer is

TEMPCOUNT :integer := 0;

begin

for S in STMIT YPE'FIRST .. STMITTYPE'LAST loop
for H in HOW.YPRODUCED'FIRST.. HOWPRODUCED'LAST loop
for 0 in ORGIN'FIRST .. ORGIN'LAST loop
for U in USAGE'FIRST .. US AGE'LAST loop
TEMPCOUNT: TEMPCOUNT + INCOUNTARRAY (S, H, 0, U, D);

end loop;
end loop;

end loop;
end loop;

138

return TEMPCOUNT;

end COUNTJ)DEVELOPMENTI_STATUS;

procedure COUNTATTRIBUTEONE (INRAECORDFLAGS: in FLAGS;
INCOUNLTJOTALS: in out COUNTTOTALS_TYPE;
DJ._ARRAY in COUNT ARRAYTYPE) is

begin

if IN_-RECORDQYLAGS.PANEL3.line-l thenw
INCOUNT_TOTALS.STMT_NUMSJEXEC_TOTAL: COUNTSTMTTYPE

(STMT_-TYPE'val (0), INARRAY);
end if;
if INRECORD-FLAGS.PANEL3.Iine_3 then

INý_COUNTý_TOTALS.STMTý_NUMS.DECý_TOTAL: COUNTý_STMT_-TYPE
(STMT_-TYPE'val (1), IN-ARRAY);

end if;
if INRECORDý_FLAGS.PANEL3.11ne_4 then

IN_COUNTTOTALS.STMT_NUMS.PRAGMATOTAL: COUNTSTMTTYPE
(STMT_-TYPE'val (2), IN-ARRAY);

end if;
if IN_RECORDý_FAGS.PANEL3.line_6 then
INCOUNTTOTALS.STMTNUMS.CMTSONOWNTOTAL:

COUNT_STMTTYPE (STMTTYPE'val (3), IN _ARRAY);
end if;,
if INRECORD_FLAGS.PANEL3.line37 then

INCOUN'TTOTALS.STMTNUTMS.CMTSWSRC_-TOTAL:
COUNTý_STMTý_TYPP (STMT_TYPE'val (4), IN-ARRAY);

end if-,
if INRECORDý_FLAGS.PANEL3.line_8 then

IN_COUNTý_TOTALS.STMTý_NUMS.BANNERCMTS_TOTAL:
COUNTSTMTTYPE (STMTTYPE'val (5), IN ARRAY);

end if;,
if INRECORDJFLAGS.PANEL3.line_9 then

INý_COUJNTý_TOTALS.STMTN`UMS EMPTY_-CMTSJOTAL:
COUNT_STMTý_TYPE (STMT_TYPE'val (6), IN-ARRAY);

end if-,
if INRECORD...FLAGS.PANEL3.line_1 0 then

INCOUNT_'TOTALS.STMTNUTMS.BLANXLINESTOTAL:
COUNTSTMT_-TYPE (STMTTYPE'val (7), IN-ARRAY);

end if;

end COUNTATTRIBUTE_ONE;

procedure COUTNTATITRBUTETWO (INRECORDRLAGS: in RLAGS;
INCOUNTý_TOTALS: in out COUNTTOTALSTYPE;

139

INARRAY in COUNTJ.RRAYTYPE) is
begin

if IN_.RECORD&FLAGS.PANEL4.line_1 then
INCOUNT-.TOTALS.PRODUCEDLNUMS.PROGRAaMMED.JOTAL:

COUNL-HOW-PRODUCED (HOWRODUCED'val (0), IN-ARRAY)',
end if-,
if INRECORD._FLAGS.PANEL4.lineiý2 then

JN..COUNT_TOTALS.PRODUCED._NUMS.GENERATEDJTOTAL:
COUNTI_HOW_PRODUCED (HiOWPRODUCED'val (1), IN-ARRAY);

end if;,
if IqRECORD.YLAGS.PANEL4.line_3 then

INCOUNT_TOTALS.PRODUCEDNUMS.CONVERTEDTOTAL:
COUNTHOW_PRODUCED (HiO W RODUCED'val (2), INARRAY);

end if-,
if INRECORDý_FLAGS.PANEL4.Iine_4 then

INCOUTNTTOTALS.PRODUCEDNUMS.COPIEDTOTAL:
COUNTý_HOW_PRODUCED (HOW -PRODUCED'val (3), IN-ARRAY);

end if,
if 1N..RECORDFLAGS.PANEL4.Iine_5 then
INCouNT_TOTALS.PRODUCEDý_NUMS.MODIFID-JOTAL:

COUNTHOWPRODUCED (HOW PRODUCED'val (4). HINARRAY);
end if;,
if IN_RECORDFLAGS.PANEL4.Iine_6 then

INCOUINTJTOTALS.PRODUCEDNUMS.REMOVEDTTA
COUNTHOW_PRODUCED (HOWPRODUCED'val (5), lINARRAY);

end if;

end COUN.ATTRIBUTrETWO;

procedurfe COUNTý_ATI1MUBUýTEHREE (INRECORDFLAGS :in FLAGS;
INCOUNT_TOTALS :in out COUNT_ýTOTAL&-TYPE;
INARRAY in COUTNTARRAYTYPE) is

begin

if INRECORDý_FLAGS.PANEL5.linejl then
IN_COUTNT_TOTALS.ORGINNUMS.NEW_WORK.TOTAL: COUNT_-ORGIN

(ORGIN'val (0), IN....ARRAY);
end if;
if INRECORDFLAGS.PANEL.5.ine-3 then
IN_COUNT_TOTALS.ORGIN_NUMS.PREVIOUSVERIONTOTAL:

COUNT-.ORGIN (ORGIN'val (1), IN-ARRAY);
end if,
if IN_RECORDý_FLAGS.PANEL5Jline_4 then
INCOUNTJTOTALS.ORGINNUMS.COTSTOTAL: COUNLORGIN (ORG IN'val (2),

INýARRAY);
end if;,
if INý_RECORDFLAGS.PANEL5.IineS then

140

IN_COUJNT_TOTALS.ORGINNUMS.GFSTO)TAL: COUNTORGIN (ORGIN'val (3).
INARRAY);

end if;
if IN RIECORDFLAGS.PANEL5.line_6 then
INCUTTTL.RIUSANTERDCOA

COUNTORGIN (ORGIN'val (4), IN...ARRAY);
end if;
if INRECORDFLAGS.PANEL5.line_7 then

IN...COUNT...TOTALS.ORGINNUMS.VSSPTL]IBTOTAL: COUNT..ORGIN
(ORGIN'val (5), IN_-ARRAY);

end if;
if INRECORDFLAGS.PANEL5.line_8 then
INý_COUNTý_TOTALS.ORGLNNUMS.VS_SPT_OSTOTAL: COUINTORGIN

(ORGIN'val (6), INARRAY);
end if;
if INRECORDJFLAGS.PANEL5.lie_9 then

IN_COUNT_-TOTALS.ORGINNUMS.LOCALSUPPLIEDLIBTOTAL:
COUNTI_ORGIN (ORGIN'val (7), IN _ARRAY);

end if,
if IN_.RECORD_FLAGS.PANEL5.line_10 then
INCOUNT_-TOTALS.ORGINNUMS.COMMERCIAL_-LIB_TOTAL:

COUNT_-ORGIN (ORGIN'val (8), IN _ARRAY);
end if;
if INRECORDFLAGS.PANEL5.line_1I then
IN_COUNTý_TOTALS.ORGIN_NUMS.REUSELIBTO)TAL: COUNTORGIN

(ORGIN'val (9), ll{ARRAY);
end if;,
if IN_-RECORDFLAGS.PANEL5.line_12 then
INCOUNTTOTALS.ORGINNUMS.OTHERCOMPONENTTOTAL:

COUNT_ORGIN (ORGIN'val (10), IN ARRAY);
end if;

end COUNTATI'RIBUTE_THREE;

procedure COUNTATTRIBUTE_-FOUR (IN....RECORD_-FLAGS: in FLAGS;
INCOUNTTOTALS: in out COUNTTOTALSTYPE;
INARRAY in COUNTARRAYTYPE) is

begin

if INRECORDFLAGS.PANEL6.line_1 then
IN_COUNT_TOTALS.USAGE_-NUMSiPRIMARYPRODUCTTOTAL:

COUNTUSAGE (IJSAGE'val (0), IN...ARRAY);
end if;,
if INRECORDFLAGS.PANEL6.line_2 then

INCOUTNT'_TOTALS.USAGENUTMS.EXTERNALTOTAL: COUNTUSAGE
(USAGE'val (1), INARRAY);

end if;,

141

end COUNT.AITRMBMrE.OUR;

procedure COUNTAITrRUTE_FIVE (ThLRECORDFLAGS: in FLAGS;
INCOU-TJOTALS : in out COUNT-TOTALSTYPE;
INARRAY :in COUNT-ARRAYTYPE) is

begin

if IN...RECORDKFAGS.PANEL9.linejl then
IN._COUTNT_TOTALS.DEVELOPED)ý_UMS.ESTIMATEDTOTAL:

COUNTý.DEVELOP)4BNT.STAThJS (DEVELOPMENT...STATUS 'val (0),
nqh-ARRAY);

end if,
if RN_RECORDFLAGS.PANEL9.Iine._.2 then

INýCOUNTTOTALS.DEVELOPEDLNUMS.DESIGNED_-TOTAL:
COUNTDEVELOPMENTSTATUS (DEVELOPMENTSTATUS'val (1),

IN..ARRAY);
end if;,
if IN_.RECORDFLAGS.PANEL9.line_3 then

INý_COUJNT_TOTALS.DEVELOPEDNUMS.CODED_-TOTAL:
COUNT...DEVELOPMENI..STATUS (DEVELOPMENT..STAUJS 'val (2),

INLARRAY);
end if-,
if 1N.RECORDFLAGS.PANEL9.Iine_4 then

IN__COUNT_TOTALS.DEVELOPED...NUMS.UNITTEST_DONEJTOTAL:
COUNTJ)DEVELOPMENTSTATUS (DEVELOPMENTSTATUS'val (3),

IN -ARRAY);
end i-
if IN _RECORD ý_LAGS.PANEL9.line_5 then

IN_COUNTý_TOTALS.DEVELOPEDNUMS.INTEGRATEDJOTAL:
COUNTDEVELOPMENLýSTATUS (DEVELOPUENT.STATUS'val (4),

INARRAY);
end if;,
if RqRECORD. LAGS.PANEL9.Iine_6 then

INCOUNlýTJOTALS.DEVELOPEDNUMS.TESTREADINESSREVIEWTOTAL:
COUNLýDEVELOPNMENTSTATUJS (DEVELOPMENTSTATUS'val (5),

NARRAY);
end if-,
if INRECORD _FLAGS.PANEL9.Iine_7 then

INCOUNTý_TOTALS.DEVELOPED_NUMS.CSCICOMPLETEDTOTAL:
COUNL-DEVELOPMENT_STATUJS (DEVELOPMENTI_STATUS'val (6),

IN...ARRAY);
end if;,
if IN..RECORD FLAGS.PANEL9.Aine_8 then

INCOUNT3_OTALS.DEVELOPEDNUMS.SYSTEMTESTý_TOTAL:
COUNT_-DEVELOPMENTý_STATUJS (DEVELOPMENTSTATIJS'val (7),

IN ARRAY);
end if;

end COUINTA'ITRJBUTEFIVE;

142

function COUNTCLARIFICATION (BOOLEANJN : in BOOLEAN) return boolean is

TEMP : boolean:= FALSE;

begin

if BOOLEANJN then
TEMP :=TRUE;

else
TEMP:= FALSE;

end if;

return TEMP;

end COUNT._CLARIFICATION;

function FIND LENGTH (FILELIST: in GLOBAL.MYVALUE) return integer is

TEMPNUMBER : integer:= 0;
TEMP_CHAR character :='';

begin

for I in FILELIST'range loop
for J in I .. 1024 loop
if FILELIST (I)(J) /= I :MP_CHAR then
TEMP_NUMBER:= 'IEMP_NUMBER + I;

else
exit;

end if;
end loop;

end loop;

return TEMP NUMBER;

end FND_LENGTH;

procedure OPENOUTFILE is

OUT_FILENAME : GLOBAL.MYVALUE:=
GLOBAL.RECORDFLAGS.PANEL2.OUTFILE_NAME;

LENGTH integer,

143

begin

LENGTH: FINDLENGTH (OUTFILE_NAME);

FIE_.LISTýNAM1E(U..ENGTH): OUT_FILE,_NAME (1) (L..LENGTH);

create (OUTJILEJYPE, outj-ile, FILEJJSTNAM1E (.LIENGTH));

end OPEN-PUT.YELE;

procedure CLOSEOL01T_.FILE is

OUT.YTILENAME :GLOBAL.MYVALUE:
GLOBALRtECORDLFLAGS.PANEL2.OUTFILENAMIE;

LENGTH integer,

begin

LENGTH: FINDLENGTH (OUT _FILENAME);
FILELIST!..NAME(1._LENGTH): OUTFILENAME (1) (L.IENGTH);
close (OUT.YILM..TYPE);

end CLOSE.OUT FILE;

Procedure DETERMINE.YYPE.COMMIENT (IN-BANNERLENGTH in out integer;
flhBANNEKCHAR :in out character,
TILBANNER STRING :in out STRING) is

-- Function to determine if a particular comment is
-- a banner comment.

function BANNERFOUND (BANNERLENGTH :in integer;
BANNERCHAR :in character;
BANNER STRING :in STRING) return boolean is

FIRST integer:=l1;
BANNER :boolean :FALSE;
BLANK..SPACE, character:
HYPHEN :character :=-'';

BANNER-.CHARS :string (I..4): (others =>-);
COUNTLOOP integer:=0;
REPEATCHARS boolean: FALSE:

begin

144

for I in BANNERKSTRINGfirst .. BANNERSTRING'Iast - I loop

if BANNERSTRING (1) ='" and
BANNER_STRING (1+1)-'-" then

BANNERCHARS := BANNERSTRING (I+2..I+5);

for J in BANNERSTRING'fuit+I+2.. Bannerjlength - 4 loop

if BANNERSTRING (J) = BANNER-CHARS (1) or
BANNER_STRING (J) = BANNERCHARS (2) or
BANNER_STRING (J) = BANNERCHARS (3) or
BANNER_STRING (J) = BANNERCHARS (4) or
BANNERSTRING (J) = BLANK_SPACE then

COUNTLLOOP := COUNTLOOP + 1;
if COUNT_LOOP > 4 then

BANNER := TRUE;
end if;

else
BANNER := FALSE;
exit;

end if-
if count_loop < bannerjength - I then
null;

else
exit;

end if;
end loop;

exit;
end if;

end loop;

return BANNER;

end BANNER FOUND;

begin

- Checking for banner comments.
-- CONDITIONS:
-- Banner characters must be non-blank;
-- Banner characters must be either the third character from the
- left, or blank charactor.
-- ACTION:
-- Set the start and stop flags to true for Banner comments.
if BANNER_FOUND (INBANNERLENGTH, IN-BANNERCHAR,

INBANNERSTRING) then
FLAGSARRAY (STMTTYPE'val (5). 1) := TRUE;
FLAGS.ARRAY (STMT TYPE'val (5), 2) := TRUE;

145

- Checking for comments on own line.
- Conditions:
- Star flags for Executable, Declaration, and or Pragma must not be
- set to true.
- ACTIONS:
- Set start and stop flags to true for Comments on own line.
else
FLAGSARRAY (SrMTTYPE'val (3), 1):= TRUE;
FLAGS_ARRAY (STMTJYPE'vaI (3), 2):= TRUE;

end if;

end DETERMINETYPE_COMMENT;

function CHECKEDOKAYA (INCURRENTKSETTINGS: CURRENTLSErTMNGSTYPE)

return boolean is

OKAY : boolean := TRUE;

begin

case INCURRENT SETrINGS.FIRST_ATtRIBUTE is
when STMT TYPE'VAL (3)1 STMTTYPE'VAL (4)1 STMTTYPE'VAL (5)1

STMT_TYPE'VAL (6) 1 STMLTYPE'VAL (7) =>
OKAY:= FALSE;

when others =>
null;

end case;

case INECUREMNSETrINGS.SECONDATTRIBUTE is
when HOWPRODUCED'VAL (5) =>

OKAY := FALSE;
when others =>
null;

end case;

case IN_CURRENTSE1TINGS.THIRD_ATWRIBUTE is
when ORGIN'VAL (5) 1 ORGIN'VAL (6) =>
OKAY := FALSE;

when others =>
null;

end case;

case IN_CURRENT_SETrINGS.FOURTH ATTRIBUTE is
when USAGE'VAL (1) =>

OKAY :FALSE;
when others =>

null;
end case;

146

case IN -CURRENTý_SETrINGS.JFIfTA1TRIBUTE is
when DEVELOPMIENT,..STATUS'VAL (0) 1 DEVELOPNMENTSTATUS'VAL (1) 1

DEVELOPMIENT_-STATUS'VAL (2) 1 DEVELOPMIEN-TýSTATUS'VAL (3)l
DEVELOPMIENTSTATUS-VAL (4) 1 DEVELOPMIEN-LSTATUS'VAL (5)l
DEVELOPMENTSTATUS'VAL (6) =>

OKAY: FALSE;
when others =>

null;
end case;,

return OKAY;

end CHECKEDOKAYA;

function CHECKEDOKAYB (ThLCURRENTSETITNGS: CURRENTSElTINGS_TYPE)

return boolean is

OKAY :boolean: TRUE;

begin

case RqCURRENT-SETI'INGSflRST_-ATTRIBUTE is
when STMTr_TYPE'VAL (3)l STMTý_TYPE'VAL (4) 1 STMT_-TYPE'VAL (5)l

SITM-T.YPE'VAL (6) 1 STMT-TYPE-VAL (7) =>
OKAY: FALSE;

when others =>
nutI

end case;

case INý_CURRENTýSETrNGS.THIRD_AITRIBUTE is
when ORGIN'VAL (5) 1 ORGIN'VAL (6) =>
OKAY: FALSE,

when others =>
null;

end case;

case INCURRENTSE1TINGS.FOURTHATJTRBUTE is
when USAGE'VAL (1) =>
OKAY: FALSE;

when others =>
null;

end case;

case IN_-CURRENT.-SETrINGSJFIFTHATITRIBUTE is
when DEVELOPMENTSTATLJS'AL (0) 1'DEVELOPMENT STATIJS'VA1. (1) =>
OKAY: FALSE;

when others =>

147

end caw;

return OKAY,

end C]HECKCEDL.OKAY-B;

fuinction CHECKEDOKAYC (IN...CURRENTý_SETFNGS: CURRENLSE1TINGSTYPE)

return boolean is

OKAY :boolean: TRUE;

begin

case IN CURRENTý_SEl NGSflRST...A1TRIBUTE is
when STMTJfYPE'VAL (5) 1 STMT TYPE'VAL (6)l STMTTYPE'VAL (7) =>
OKAY: FALSE;

when others =>
nutl

end case;

case INý_CURRENT_.SE1TINGS.THIRD_ATTR1B3UTE is
when ORGIN'VAL (5) 1 ORGIN'VAL (6) =>
OKAY: FALSE;

when others =>
null;

end case;

case IN_-CURRENT_-SETTIGS.FOURTHATITRIBUTE is
when USAGE'VAL (I) =>
OKAY: FALSE;

when others =>
nunl;

end case;

case IN CURRENTSETITINGSFI~rHAlTRBUTE is
when DEVELOPMENTSTATUS'VAL (0) 1 DEVELOPMIENT_-STATIJS'AL (1) 1

DEVELOPMENT...STATUS'VAL (2) 1 DEVELOPMENT_-STATUS'VAL (3)l
DEVELOPMENTSTATUSN'AL (4) 1 DEVELOPMENTISTATLJS'VAL (5)l
DEVELOPMENT...STATUSVAL (6) =>

OKAY:=FALSE;
when others =>
null;

end case;

return OKAY;

end CHECKEDý_OKAYC;

148

function CHECKED_-OKAYD (II{CURRENTSElTINGS: CURRENTSE1TINGSJTYPE)

return boolean is

OKAY :boolean: TRUE;

begin

case INCURRENT- SEITINGSFIRST_-ATrMIUTE is
when STMLTYPE'VAL (3)1 STMTý_TYPE'VAL (4) 1 STMTTYPE'VAL (5)1

STMT..TYPE'VAL (6) 1 STMTJTYPE'VAL (7) =>
OKAY: FALSE;

when others =>
null;

end case;

case IN_-CURRENILSE1TINGS.THIRD_AlTRBUTE is
when ORGIN'VAL (5) 1 ORGIN'VAL (6) =>

OKAY := FALSE;
when others =>

null;
end case;

case IN_-CURRENTSE1TIGS.FOURTH_ATTRIUTE is
when USAGE'VAL (1) =>
OKAY: FALSE;

when others =>
null;

end case;

case INCURRENT_SETTINGSYFLFTHA¶TRIBUTE is
when DEVELOPMIENTSTATUS'VAL (0) 1 DEVELOPMIENT_STATUS'VAL (1) 1

DEVELOPMIENTSTATUS'VAL (2) 1 DEVELOPMENTSTATUS'VAL (3)1
DEVELOPMIENTSTATLJS'VAL (4) 1 DEVELOPMENTýSTATLJS'AL (5)1
DEVELOMIENT-STATUS'VAL (6) =>

OKAY: FALSE;
when others =>

null;,
end case;

return OKAY;

end CHECKED.OQKAY_D;

function CHBCKEDLOKAY E (IN CURRENT_SEITTNGS: CURRENTSElTINOSTYPE)
return boolean is

149

OKAY :boolean: TRUE;

begin

case ThLCURRENT...SEMMINS.ISTAlIRIBUTE is
when STM~fTJYPE'VAL (5)l STMTTYPE'VAL (6) 1 STMTTYPE'VAL (7) =>
OKAY: FALSE;

when others =>
null;

end case;

case IN..CURRENT_-SE1TINGS.THIRDý_AlTRIBUTE is
when ORGINVAL (5) 1 ORGIN'VAL (6) =>
OKAY: FALSE;

when others =>
null;

end case;

case INýCURRENT_-SE¶TINGS.FOURTHLA1TRIBUTE is
when USAGE'VAL (1) =>
OKAY: FALSE;

when others =>
null;

end case;

case 1N..CURRENTSETIINGS.F~IFTHAlTRBUTE is
when DEVELOPMENTý_STATUS'VAL (0) 1 DEVELOPMENT-STATUS'VAL, (1) 1

DEVELOMIENLýSTATUS'VAL (2) 1 DEVELOPMIENT_STATLJS VAL (3)l
DEVELOPMIENTý_STATUS'VAL (4) 1 DEVELOPMENT_STATUJS'VAL (5) 1
DEVELPMIENT..STATUS'VAL (6) =

OKAY: FALSE;
when others =>
null;

end case;

return OKAY;

end CHECKED...OKAY-E;

function CI{ECKED...OKAYJ.. (INCURRENT_SETTINGS: CURRENT SETIINGSTYPE)

retuffn boolean is

OKAY :boolean :TRUE;

begin

150

case INk_CURRENT_SETTINGS FISTAITFRUTE is
when STMTTYPE'VAL (0) =>
if not GLOBAL.RECORDý_FLAGSF.PANEL3JLINE_1 then
OKAY: FALSE;

end if;,
when STMTTYPE'VAL (1) =>
if not GLOBAL.RECORDý_FLAGSF.PANEL3.LINE_3 then
OKAY: FALSE;

end if;
when STMTTYPE'VAL (2) =>
if not GLOBAL.RECORDý_FLAGSF.PANEL3.LINE_4 then
OKAY: FALSE;

end if;
when SITLffYPE'VAL (3) =>
if not GLOBAL RECORDý_FLAGSF.PANEL3.LINE_6 then
OKAY: FALSE;

end if-,
when STMTý_TYPE'VAL (4) =>
if not GLOBAL.RECORD_-FLAGSF.PANEL3.LINE_7 then
OKAY: FALSE;

end if;
when STMTý_TYPE'VAL (5) =>
if not GLOBAL-RECORDFLAGS_F.PANEL3.LINE_8 then
OKAY: FALSE;

end if;,
when STMTTYPE'VAL (6) =>
if net GLOBAL.RECORDFLAGSF.PANEL3.LINE_9 then
OKAY: FALSE;

end if;
when STMTffTYPE'VAL (7) =>
if not GLOBAL~RECORDFLAGS_FY.PANE! .3.LINE_10 then
OKAY: FALSE;

end if;
end case;

case ThLCURRENT_-SETrINGS.SECOND-A1TIBUTE is
when HOWPRODUCED'VAL (0) =>
if not GLOBAL.RECORDFLAGS_F.PANEL4.LINE_1 then
OKAY: FALSE;

end if;,
when HOW_PRODUCED'VAL (1) =>
if not GLOBAL.RBCORDFLAGS_F.PANEL4.LINE_2 then
OKAY: FALSE;

end if;
when HOW.J'RODUCED'VAL (2) =>
if not GLOBAL.RECORDFLAGS_FPANEL4 LINE3 then
OKAY: FALSE;

end if;
when HOW-PRODUCED'VAL (3) =>
if not GLOBAL.RECORDFLAGSF.PANEL4.LINE_4 then
OKAY: FALSE;

151

end if,
when HOWRODUCED'VAL (4) =>
if not GLOBAL.RECORDFLAGS_F.PANEL4JJINE_5 then
OKAY: FALSE;

end if;
when HOWPRODUCED'VAL (5) =>
if not GLOBAL.RECORDFLAGSF.PANEL4 LINE_6 then
OKAY: FALSE;

end if,
end case;

case INCURRENTSE1TrNGS.THIRD_AlTRIUrE is
when ORGIN'VAL (0) =>
if not GLOBAL.RECORDJLAGSF.PANEL5 LINEI then
OKAY: FALSE;

end if;,
when ORGIN'VAL (I) =>
if not GLOBAL.RECORDFLAGSF-PANEL5.LINE_3 then
OKAY: FALSE;

end if;
when ORGINVAL (2) =>
if not GLOBAL.RECORDý_FLAGSF.PANEL5L.INE_4 then

OKAY :=FALSE;
end if;

when ORGIN'VAL (3) =>
if not GLOBAL.RECORDý_FLAGSF.PANEL5.LINE_5 then
OKAY: FALSE;

end if;
when ORGIN'VAL (4) =>
if not GLOBAL-RECORD_-FLAGS_F.PANEL5.LINEý6 then
OKAY: FALSE;

end if;
when ORGIN'VAL (5) =>
if not GLOBAL.RECORDFLAGS_F.PANEL5.LINE_7 then
OKAY: FALSE;

end if;
when ORGIN'VAL (6) =>
if not GLOBAL.RECORDFLAGSF.PANEL5.LINE_8 then
OKAY:=FALSE;

end if;
when ORGIN'VAL (7) =>
if not GLOBAL.JRECORDý_FLAGSF.PANEL5 LINE_9 then

OK.AY: FALSE;
end if;

when ORGIN'VAL (8) =>
if not GLQBAL.RECORI)_FLAGSF.PANEL5 LINE_ 10 then
OKAY: FALSE;

end if;,
when ORGIN'VAL (9) =>
if not GLOBAL.RECORDFLAGSF.PANEL5.LINE_1 I then

152

OKAY: FALSE;
end if;

when ORGIN'VAL (10) =>
it not GLOBAL.RECORLI)_FLAGS_F.PANEL5.LINE_12 then
OKAY: FALSE;

end if;,
end case;

case IN_CUJRRENTý_SE1TINGS.FOURTH_AlTRIBUTE is
when USAGE'VAL (0) =>
if not GLOBAL.RECORJ)_FLAGSF.PANEL6JJNE_1 then
OKAY: FALSE;

end if;,
when USAGE'VAL (1) =>
if not GLOBAL.RECORDý_FLAGSF.PANEL6.LINE_2 then
OKAY: FALSE;

end if;,
end case;

case IN_-CUTRRENTSE1TINGS.FIFTHATTRIBUTE is
when DEVELOPMENTSTATUS'VAL (0) =>
if not GLOBAL.RECORDý_FLAGS_F.PANEL9.LINE_1 then
OKAY: FALSE;

end if;,
when DEVELOPMNTTSTATLJS'VAL (1) =>
if not GLOBAL.RBCORDý_FLAGS_F.PANEL9.LINE_2 then
OKAY: FALSE;

end if;,
when DEVELOPAMENTSTATUJS'VAL (2) =>
if not GLOBAL.RECORDý_FLAGSF.PANEL9JINE_3 then
OKAY: FALSE;

end if;
when DEVELOPMIENTSTATUS'VAL (3) =>
if not GLOBALRECORDFLAGSF.PANEL9.LLNE_4 then
OKAY: FALSE;

end if;
when DEVELOPMIENTSTATUS'VAL (4) =>
if not GLOBAL.RECORDFLAGSF.PANEL9.LINE_5 then
OKAY: FALSE;

end if;,
when DEVIELOPNMENTSTATUS'VAL (5) =>
if not GLOBALJRECORDý_FLAGSF.PANEL9JLINE_6 then
OKAY: FALSE;

end if;,
when DEVELOPMENTSTATJS'VAL (6) =>
if not GLOBAL.RECORDFLAGS_F.PANEL9iLLNE_7 then
OKAY: FALSE;

end if;,
when DEVELOPMENTSTATUS'VAL (7) =>
if not GLQBAL.RECORI)_FLAGSF.PANEL9.LJNE_8 then
OKAY: FALSE;

153

end if,

end case;

return OKAY;

end CECKED-.OKAY-F;

procedure PARSE,_SPECIALLINE (LENGTH in integer,
POINTER_1 :inOut positive;
RETURN_VALUE : out integer,
PARSE,_STRING : in out string) is

POUTER_2 :positive;
NOTFOUND : boolean :=FALSE;
PARSIESTRING_2 : string (1..20) := (others =>' ');
TEMPINT :integer,

begin

while not NOT_FOUTND and POINTER)l <= (LENGTH -2) loop
if PARSESTRING (POINTER_1 .. POINTER)l + 3) "=> " then

POINTER)1 := POINTER) + 4;
POIN'IER_.2 := POINTER) + 1;

while not NOTYOUND and POINTER_2 <-- LENGTH loop
if PARSELSTRING (POINTER.2) = ','or

PARSESTRING (PORNTER..2) = - then
PARSE-STRING,..2 (POIN'TERI1- (POINTER)1 - 1)..

(POINTER_2- POINTER_1))
PARSE,_STRING (POINTR_1I.. POINTR 2 - 1);

TEMPINT := integer' VALUE (PARSE_STRING_2);
RETURNVALUE := TEMPINT;.
PARSE....TRING_2 := (others =>')
NOT_-FOUTND := TRUE;

else
POINTE.2 := POINTER 2+1;

end if;
end loop;

else
POINTER) := POINTIRl + 1;

end if;

end loop;

end PARSE,_SPECIALLINE;

154

procedure PARSESPECIAL_-COMMENT (II{.NUM :in integer;,
IN_LENGTH: in integer;
IN_STRING :in string) is

TEM[P_STRING string (1. 1024) := [I'NSTRING;
EXECJTEM[P.
DEC-TEMP,
PRAGMATEM[P natural: 0;
OFFSET :positive;
OFFSET - positive: 13;
OFFSET 2 positive: 26;,
OLD.-SETrINGS CURRENTSETiTINGS_.TYPE := CURRENTý_SETfl1NGS;

begin

if IN_NUM < 0 hen
OFFSET: OFFSET-1;
CURRENTý_SEITINGS.SECONDATURIUTE: HOWPRODUCED'val (5);

else
OFFSET: OFFSET-2;
CURRENTSE1TINGS.FLF-THAYTRIBUTE: DEVELOPM[ENTSTATUS'val (0);

end if;

if IN-LENGTH >0 then

-- Now looking for the number associated with Executables
PARSESPECIAL_-LINE (INLENGTH,

OFFSET,
EXEC-TEN?,
TEM[PSTRING);

CURRENT_SEITINGS.FIRSTj_AlTRIBUTE: STMTTYPE'val (0);
if CHECK_-REPORTj_A_E then
GLOBAL.DETERMINEWHICHARRAY (IN_RECORD => CURRENTSETflNGS,

ADDNUMBER => EXEC_TEM[P);
end if;
if CHECKREPORTý_F then
if CHECKEDOKAYF (CURRENTSETTINGS) then

COUNTI_LINE (CURRENTSETITINGS, COUNT_.ARRAYF, EXEC.,.TEMP);
end if;,

end if;

-- Now need to find the number associated for Declarations
PARSESPECIALLINE (IN _LENGTH,

OFFSET,
DECJTEMP,
TEMPSTRING);

CURRENT_.SETTIGS.FIRSTATTRIBUTE := STMTTYPE'val (1);
if CHECKREPORTAE then

155

GLOBAL.DETERNMIE_WHICHARRAY (INRECORD => CURRENTSETrINGS,
ADDNUMBER => DECý_TEMP);

end if.
if CHECKREPORTF then
if CHECKEDý_OKAYF (CURRBNTSETJ7INGS) then
COUNTLINE (CURRENTSElTINGS, COUNTARRAY..F. DEC-TEMP):

end if-,
end if;,

- Now need to find the number associated for Compiler Directives
PARSESPECIAL_LINE (ThLILENGTH,

OFFSET,
PRAGMAJTEMP,
TEMPý_STRING);

CURRENLSETITINGS.FIRSTý_ATTRIBUTE := STMTTYPE'val (2);
if CHECK_-REPORTAE then
GLOBAL.DETERNvINE_WHICH_ARRAY (INRECORD => CURRENTSETITINGS,

ADDNUMBER => PRAGMkTEMP);
end if;
if CHECK_REPORTF then
if CHECKEDOKAYYF (CURRENT_SETTINGS) then
COUNT_LINE (CURRENTý_SETTINGS, COUNT_-ARRAYF, PRAGMAJEMP);

end if;,
end if;

CURRENT_SETTINGS: OLDSETTINGS;

end if;,

end PARSESPECIALCOMMVENT;

procedure DETERMIfNE_WHICH_-ARRAY (IN-RECORD in
CURRENTSETTINGSTYPE;

ADDNUMBER: in natural=1) is

begin

if RECORD_-FLAGS.PANEL2.REPORTA then
if CHECKEDOKAYA (INRECORD) then

COUNT_LINE (1N.RECORD, COUNT_ARRAY_A, ADD_NUMBER);
end if;,

end if;

if RECORD_-FLAGS.PANEL2.REPORTB then
if CHECKEDOKAY B (IN_RECORD) then

156

COUNT_.LINE (INRECORD. COUNT.ARRAY-B, ADDLNUMBER);
end if,

end if-,

if RECORD_FLAGS.PANEL2.RE.PORTC then
if CHECKEDOKAYC (IN..RECORD) then

COUNLLL.NE (IN...RECORD, COUNTARRAY...C, ADD...NIMBER);
end if,

end if,

if RECORDIFLAGS.PANE.2.REPORTDl then
if CBECKEDOKAY_D (INRECORD) then

COUNT_.LINE (INRECORD, COUNL.ARRAYD, ADD!_NUMBER);
end if-,

end if;

if RECORD_FLAGS.PANEL2.REPORTE then
if CHECKEDOKAY-E (INRECORD) then
COUNTJINE (INRECORD, COUNTARRAYE, ADDNUMBER);

end if;
end if;

end DETERMIINEý_WHCICHARRAY;

procedure COUNTLLINE (IN-RECORD :in CURRENTSETTINGS_.TYPE;
ARRAYTYPE: in out COUNTARRAYTYPE;
ADDNUMBER: in natural: 1) is

TEMP :natural: 0;

begin

TEMP:=ARRAY_-TYPE (JNRECORD.RSTý_AITRIBUTE,
INRECORD.SECONDATTRIBUTE,
INRBCORD.THIRDATrRIBUTE,
INRECORD.FOURTHATRIIBUTE,

IN_RECORD.FHIFtHATIIUUTE);
TEMP: TEMP + ADD_NUMBER;

--put C' +TEMP+");
--put (integer'irnage(temp));

ARRAYTYPE (ThLRECORDYMISTATTRIBUTE,
INRECORD.SECONDAITRIBUTE,
INRECORD.THIR_ATTnUBUTE,
INRBCORD.FOURTHAITRIBUTE,
INRECORDYIFTHATTRIBUTE): TEMP;

end COUNT...LINE;

157

procedure ADD TO.ARRAY_A_E (INCURRENTSE'TINGS: in out

CURRENTSETTINGSTYPE) is

ADDED_TOARRAY : boolean:= false;

begin

for I in PRIORITY.ARRAYA_E'range loop

for J in STMTTYPE loop

-- Found the statement type with the highest priority
-- Conditions:
-- Start flag is true, stop flag is true, ADDEDTOARRAY is false.

-- Actions:
-- Set ADDED_TO_ARRAY to true; set the FIRST_ATrRIBUTE to the
- current STATEMENTTYPE (J); set both the
-- start and stop flag of the current statement type to false.
if PRIORrlYARRAY_A_E (W)= J and

FLAGSARRAY (J, 1) and
FLAGSARRAY (J, 2) and
not (ADDEDTOARRAY) then

IN_CURRENTSETTINGSFIRSTATMRIBUTE := J;
DETERMINEEWHICHARRAY (INRECORD => INCURRENTSETTINGS);

ADDED_TCLARRAY := true;

-- Found the statement type with the highest priority
-- that extends over two or more lines.
-- Conditions:
-- Start flag is true, stop flag is false, ADDED_TO_ARRAY is false.
-- Actions:
-- Set ADDEDTOARRAY to true; set the FIRST_ATIRIBUTE to the
-- current STATEMENTTYPE (J);
elsif PRIORITYARRAY._A_E (I) = J and

FLAGS.ARRAY (J,l) and
not FLAGSARRAY(J,2) and
not ADDED_TO_ARRAY then

IN_CURRENT-sETINGS.FIRST_ATTRIBUTE := J;
ADDED_TO_ARRAY := TRUE;

DETERMINE_WHICHARRAY (INRECORD => INCURRENTSETtINGS);
end if,

end loop;

end loop;

158

end ADDTOARRAY_AE;

procedure ADD_TO_ARRAYF (IN_URRENT_SETMNGS in out
CURRENT_SETrINGSTYPE) is

ADDEDTOARRAY : boolean:= false-

begin

for I in PRIORITY ARRAYF'range loop

for J in STMTLTYPE loop

Found the statement type with the highest priority
Conditions:

-- Start flag is true, stop flag is true, ADDEDTOARRAY is false.
-- Actions:
-- Set ADDEDTOARRAY to true; set the FIRSTATTRIBUTE to the
-- current STATEMENTTYPE (J); call the procedure COUNT_LINE
-- which will add this line to the total; set both the
-- start and stop flag of the current statement type to false.
if PRIORITY_ARRAY_F (I) = J and

FLAGSARRAY (J, 1) and
FLAGSARRAY (J, 2) and
not (ADDEDTOARRAY) then

IN_CURRENT SETMINGSMIRSTATTRIBUTE := J;
if CHECKEDOKAYF (0N CURRENTSETTINGS) then

GLOBAL.COUNT_LINE (INCURRENTSETTINGS, COUNLTARRAYF);
end if;

ADDED_TO_ARRAY := true;

-- Found the statement type with the highest priority
-- that extends over two or more lines.
-- Conditions:
-- Start flag is true, stop flag is false, ADDED_TO_ARRAY is false.
-- Actions:
-- Set ADDEDTOARRAY to true; set the FIRSTATTRIBUTE to the
-- current STATEMENTTYPE (J); and call the procedure COUNTLINE

-- which will add this line to the total.
elsif PRIORITY_ARRAY_F (I) = J and

FLAGSARRAY (J,) and
not FLAGS_ARRAY(J,2) and
not ADDEDTO_ARRAY then

IN_CURRENTSETTINGS.FIRSTATTRIBUTE := J;
ADDEDTOARRAY := TRUE;

if CHECKEDOKAYF (INCURRENT_SETHINGS) then
GLOBAL.COUNTLINE (INCURRENTSETTINGS, COUNTARRAYF);

end if;

159

enrd if-,

end loop.

end loop;

end ADD JO-ARRAY..F;

procedure ADDJOQARRAY is

CURRENTSEMTNGSA...E,
CURRENTSETrINGS-y CURRENTSETIINGSTYPE: CURRENTSETI1GS;

begin

if not SPECLAL•,_OMMIENT then

if FLAGS..ARRAY (STMTTYPE'val (0), 1) and
not FLAGS...ARRAY (STMTý_TYPE'val (0), 2) then

EXECLEVEL:=EXECLEVEL +1;,
elsif not FLAGSARRAY (ST-TJYPE'val (0). 1) and

FLAGS.ARRAY (STMTTYPE'val (0), 2) -then
FLAGS...ARRAY (STMT_.TYPE'val (0), 1): TRUE;
EXECLEVEL:=EXECLEVEL -1;
if EXECLEVEL < 0 then

putjIineC'Warning: execution parsing is confused");
end if-,

elsif EXECLEVEL > 0 then
FLAGSARRAY (STMTý_TYPE'val (0), 1): TRUE;

else
null;

end if;

if FLAGSARRAY (STMTTYPE'val (1), 1) and
not FLAGS...ARRAY (STMT_TYPE'val (1), 2) then

DECLEVEL: DECLEVEL + 1;
elsif not FLAGS_ARRAY (STMT TYPE'val (1), 1) and

FLAGSARRAY (STMTTYPE'val (1), 2) then
FLAGS jiRRAY (STMTý_TYPE'val (1), 1): TRUE;
DECLEVEL:=DECLEVEL -1;
if DECLEVEL < 0 then
putjine("Waming: declaration parsing is confused");

end if;
elsif DECLEVEL > 0 then
FLAGSARRAY (STM4TTYPE'val (1), 1): TRUE;

else
null;

end if;,

160

irFASARY(TTTP'a 2,1 n

iof FLAGS.ARRAY (STMTTYPE'val (2), 2) thnd

PRAGMALEVEL: PRAGMALEVEL +1;,
eLsif not FLAGS_.ARRAY (STMLýTYPE'val (2), 1) and

FLAGS.ARRAY (STMTJ-YPE'val (2), 2) then
FLAGS_ARRAY (STMTJYPE'val (2), 1): TRUE;
PRAGMALEVEL: PRAGMALEVEL - 1;

elsif PRAGMALEVEL > 0 then
FLAGS-.ARRAY (SITMLTYPE'val (2), 1): TRUE;

else
null;

end if-,
-Debugging statements to help figure out the three
-- variables used to track multiline flags

--put N"");
--put (integer'itnage(execlevel));
-_Put (1)
--Put (1)
--put (integer'image(declevel));
--Put M"");
--Put (i");
--put (integer'image(pragmalevel));
--put (I)

-Checking for full line code
if FLAGS-ARRAY (STMTTYPE'val (3), 1) then
CURRENTSETI'INGS.FIRSTATTRIBUTE: STMTTYPE'val (3);
DETERMINEWHCHARRAY (IN-RECORD => CURRENTSETITINGS);

if CHECKREPORTF then
if CHECKEDOKAY_-F (CURRENTSETTINGS) then

GLOBAL.COUNTý_LINE (CURRENTSETTINGS, COUNT_-ARRAYJfl
end if;,

end if;,

elsif FLAGSARRAY (STMITTYPE'val (5), 1) then
CURRENTSE1TINGS.FIRSTATTRIBUTE: STMT _TYPE'val (5);
DETERMINEWHICHARRAY (INRECORD => CURRENTý_SElTING 5);

if CHECK_-REPORT_F then
if CHECKEDOKAYF (CURRENT_-SElTINGS) then

GLOBAL.COUNT_.LINE (CURRENTSETTINGS, COUNTý_ARRAYF);
end if;

end if;

elsif FLAGSARRAY (STMTTYPE'val (6), 1) then
CURRENT_-SEITrNGS.FLRSTATTRIBUTE: STMTTYPE'val (6);
DETERMINEWHICHARRAY (IN_-RECORD => CURRENT_-SElTINGS);

161

if CHECK-REPORT...F theni
if CHIECKED_-OKAYF (CURRENTSEITIGS) then

GLOBAL.COUNT-LINE (CURRENT-SE1TINGS, COUNTARRAYSF);
end if-

end if-,

elsifFRAGS-ARRAY (STMT-MTYE'val (7), 1) then
CURRENT SE1TINGS.FIRSTAITHUUTE: STMTJYPE'val (7);
DETERNIE_.WHICH...ARRAY (IN_RECORD => CURRENTSETflNGS);

if CJHECKREPORTý_F then
if CHECKEDOKAY.Y (CURREqTSE1TIGS) then

GLOBAL.COIJNTLINE (CURRENT-.SE1TIGS. COUNLARRAY-);
end if;

end if-,

else

if CHECK...REPORT_A,_E then
ADDTO_ARRAY_A_E (CURRENTý_SET1TINGS..A.E);

end if,

if CHECK.REPORTF then
ADD_TOARR.AYF (CURRENTý_SEflNGS-F);

end if;,

end if,

else

SPECIAL_,COMMENT: FALSE;

end if;.

- for insurance, clear appropriate flags before processing the next line
for i in STMTTYPE'flrst.. STMTTYPE'last loop

FLAGS_-ARRAY(l,l): FALSE;
FLAGSARRAY(I.2): FALSE;

end loop;

end ADDTOARRAY;

procedure NIT_-RECORD_FLAGS is
begin

RECORDFLAGS.PANEL6.DELOPTION (1)(my..yalue'range): (others =>");
RECORIDFLAGS.PANEL6.DELOPT1ION (1)(l..19): "Delivered as source";

end NITRECORDFLAGS;

162

procedure 1NIT3_ECORDJFLAGS_B is
begin

RECOR.DFLAGSB.PANEL4.LINE_6: TRUE;
RECORD_-FLAGSB.PANEL9JJNE-3 TRUE;
RECORD_-FLAGS&.B.PANEL9JJINEA: TRUE;
RECORD..FLAGSB.PANEL9IINEL5: TRUE;
RECORDFLAGSB.PANEL9.LINE6f: TRUE;
RECORDFLAGSB.PANEL9JTNE-7: TRUE;

end PRITRECORD..FLAGS-B;

procedure UNITRECORDFLAGSC is
begin

RECORDFLAGSC.PANEL3i.INE_6: TRUE;
RECORD_-FLAGS...C.PANEL3iLNqE_7: TRUE;
RECORDFLAGSC.PANEL4JLJNE_6: TRUE;

end RiITRECORD_FLAGS..C;

procedure NITRECORDý_FLAGSD is

begin

RECORDFLAGSD.PANEIL4LLNE_6: TRUE;

end P4T_RECORDYLAGS-_D

procedure NqITRECORD_FLAGSE is
begin

RECORD_-FLAGSE.PANEL3.LLNE_6: TRUE;
RECORD_-FLAGS3...PANEL3.LINE_7: TRUE;
RECORDFLAGS....PANEIA.LINE_6= TRUE;

end NITý_RECORDFLAGSE

163

procdWum PffRECORD_FLAGS~y is

begin

RECORD-YLAGSYF: RECORD-FLAGS;

end NIT-.RECORD-jLAGS-F;

begin

INITRECORDFLAGS;
IThTRECORD-IyLAGSýB;
MNT-RECORD..YLAGS-C,

UNITRECORD .FLAGS..P;
Inqný-ECORD-FLAGS....E
INT-RECORD.YLAGS..Y;

end Global;

164

COUNTTOOL PKG

.*-¶..Pwmgramnmed
with GLOBAL,

TAE,
PARSER,
ADA_-LEX_-10,
ADA.LEX,
REPORT_-PACKAGE.
TEXTJO;

use TAE,
TEXT-1O;

package TOOL-PACKAGE is

procedure SETPRECEDENCE F;

procedure SETPRECEDENCEAE;

procedure START-COUNT;

end TOOLPACKAGE;

--*s_Programmed

package body TOOLPACKAGE is

INITIALTYPE :GLOBAL.STMTTYPE:
IN1TIALPRIORITY :TAB .TAEINT;

package TAE-NTEGERINOUJT is new integerjio (TAE.TAERIN);
use TAEINTEGERINOUT;

package INTEGERINOUT is new integerja (integer);
use INTEGERIN-OUT;

package ENUMERATIONINOUT is new ENUMERATION_10 (GLOBAL.STMTTYPE);
use ENUMIýERATIONINý_OUT;

procedure DETERMINE_-PRIORITY (A :in GLOBAL.STMT..TYPE;
B :in TAE.TAEINT;
C :in out GLOBAL.STMTý_TYPE;

165

D :in out TAE.TAEINT) is

begin

if (D)> B and B/=0) or D =0then
C: A;
D: B;

end if;

end DETERMINEPRIORITY;

procedure SETPRECEDENCEF is

TEMPTYPE :GLOBAL.STMTTYPE;

begin

FOR I in GLOBAL.PRIORITXARRAY-Frange loop

INITIAL_-TYPE := GLOBAL.STMTTYPE'val(O);
INMTALPRIORITY := GLOBALRECORDý_FLAGSF.PANEL3 LINE_1_INT;

DETERiNEIPRIO~RTY (GLOB AL.STMTTYPE'val(0),
GLOBAL.RBCORDFLAGSR.PANEL3 LINE_1.JNT,
INITIALTYPE,
INITIALPRIORIT);

DETERMINEPRIORXITY (GLOBAL.STMT_-TYPE'val(1),
GLOBALRECORDFLAGSFJPANEL3.LINE_3JNT,
INITIALTYPE,
INITALPRIORIT);

DETERMINEPRIORITY (GLOBAL.STMTTYPE'val(2),
GLOBAL.RECORDFLAGSF.PANEL3.LINE_4-INT,
INITIAL_-TYPE,
DiNITALPRIORIT);

DETERMINE_-PRIORITY (GLOBAL.STMTTYPE'val(3),
GLOBALRECORDFLAGSF.PANEL3.LINE_6-INT,
INMITIALTYPE,
INITAL_-PRIORITY);

DETERMINEPRIORITY (GLOBAL.STMTý_TYPE'val(4),
GLOB ALRECORDFLAGSF.PANEL3.LINE_7JINT,
INITIALTYPE,
INITIAL_-PRIORITY);

DETERNMINEPRIORITY (GLOBAL.STMTTYPE'val(5),
GLOB AL.RECORDFLAGSF.PANEL3.LINE_8_INT,
INITALTYPE,
INITAL_-PRIORIT);

DETERMINEPRIORIT"Y (GLOBAL.STMTTYPE'val(6),
GLOBALJRECORDFLAGSF.PANEL3.LINE_9-INT,
INMTALTYPE,

166

INITALPRIORITY);
DETERMINE_-PRIORITY (GLOBAL.STMTTYPE'val(7),

GLOBAL.RECORDFLAGS_F.PANEL3JJNE_1OJINT.
INITIAL - YPE,
INITIALPRIORITY);

case INITIAL_TYPE is
when GLOBAL.STMTTYPE'val(O) =>
newjline (2);

-- put (GLOBAL.STMT-TYPE'val(O));
-- put (" is priority: ");
-- put (GLOBAL.RECORJ)_FLAGSF.PANEL3.LLNE_1I NT)
-- new-lie;

GLOBAL.RECORD_-FLAGSF.PANEL3.LINE_1_INT: 0;
when GLOBAL.STMTTYPE'val(1) =>

-- put (GLOBAL.STMTIýTYPE'val(1));
-- put (" is priority: ").-
-- put (GLOBAL.RECORDFLAGSF.PANEL3.L[NE_3_INT)M;
-- new-line;

GLOBAL.RECORD_-FL-AGSJF.PANEL3.LINE_3_NT := 0;
when GLOBAL.STMTTYPE'val(2) =>

-- put (GLOBAL.STMT -TYPE'val(2));
- put (" is priority: ");
-- put (GLOBAL.RECORDý_FLAGSF.PANEL3.LINE_4_INT);
-- new-line;

GLOBAL.RECORD_-FLAGSF.PANEL3IINE_4_N-T := 0;
when GLOBAL.STMTTYPE'val(3) =>

-- put (GLOBAL.STMT-TYPE'val(3));
-- put (" is priority: ");
-- put (GLOBAL.RECORDý_FLAGSF.PANEL3.LINE_6_INT);
-. new-line;

GLOBAL.RECORD_-FLAGS_F.PANEL3.LINE-_6_NT := 0;
when GLOBAL.STMTTYPE'val(4) =>

-- put (GLOBAL.STMTýTYPE'val(4));
-- put (" is priority: ');
-- put (GLOBALRECORDý_FLAGSF.PANEL3.LINE_7_INT)
-- new jine;

GLOBAL.RECORDFLAGSF.PANEL3.LINE_7_INT := 0;
when GLOBAL.STMTTYPE'val(5) =>

-- put (GLOBAL.STMT -TYPE'val(5));
-- put (" is priority: ");
-- put (GLOBAL .RECORDFLAGSF.PANEL3.LINE8_INT);
-- new-lie;

GLOBAL.RECORDFLAGSF.PANEL3.LINE_8_INT := 0;
when GLOBAL.STMTTYPE'val(6) =>

-- put (GLOBAL.STMT -TYPE'val(6));
-- put C' is priority: ");
-- put (GLOBAL.RECORDFLAGSRPANEL3.LINE_9_NT);
-- new line;

GLOBAL.RECORDFLAGSF.PANEL3JLINE_9_INT := 0:
when GLOBAL.STMTTYPE'val(7) =>

167

-* put (GLOBAL.STMTý_TYPE'val(7));
-- put ("is priority:)

-- put (GLOBAL.RBCORDý_FLAGSF.PANEL3.LINE_10_TNT);
-- new fine (2);

GLOBAL.RECORDFLAGS,..F.PANEL3.LINE_10_TNT := 0;
end case;

GLOBAL.PRIORTYý_ARRAYF (1): PMNITIALYPE;

end loop;

end SETý_PRECEDENCEF;

procedure SETPRECEDENCEA_E is

begin

GLOBAL.PRIORrTYARRAY-AE (1): GLOBAL.STMTTYPE'val(0);
GLOBAL.PRIORrTYARRAY-A.E (2): GLOBAL.STMTJYPE'val(].);
GLOBAL.PRIORrTYARRAY-A-E (3): GLOBAL.STMTTYPE'val(2);
GLOBAL.PRIORITY_ARRAY-AE (4) := GLOBAL.STMTTYPE'val(3);
GLOBAL.PRIORITYARRAY-AE (5) := GLOBAL.STMTTYPE'val(4);
GLOBAL.PRIORrTY_ARRAYAE (6): GLOBAL.STMTTYPE'val(S);
GLOBAL.PRIORrTY_ARRAYAE (7): GLOBAL.STMTTYPE'val(6);
GLOBAL.PRIORITYARRAY-AE (8): GLOBAL.STMT TYPE'val(7);

end SETý_PRECEDENCEAE;

procedure GETJFILENAME (OUTYIELENAME : out string:
OUTNAMELENGTH: out integer;
F : in out file-type) is

TEMPNUMBER : integer := 0;
TEMIPNAME : string (I1. 80) := (others =>
NOTý_BLANK : boolean: TRUE;

begin

if not end-of-file (F) then
geLline (F, TEMIPNAME. TEMPNUMBER);

while NOT_-BLANK loop
if TEMPNAME (TEMMPNUMBER) ='then

TEMPNUMBER := TEMPNUMBER - 1;

168

else
NOTBLANK: FALSE;

end if-,
end loop;

end if,

OUTI_FILE_-NAME := TEMPNAME;
OUTý_NAME_LENGTH: TEMPNUMBER;

--put ("the name of the file to opened is:)

--putjline (temp~name);
--put ("the file namne is this long:)

--put (tempnpumber, width => 3);
--new-line;

end GETFILENAME;

procedure STARTý_PARSE is

ISFILELIST : boolean;
FILELIST :GLOBAL.MYVALUE := GLOBALIRECORDý_RAGS.

PANEL2.INFELENAME,
LENGTH :integer,
FILE_-NAME : string(l..80);,
LAST :integer := 0;
FILELIST_NAME : suring (I..1024) := (others =>
F :file-type;

begin

LENGTH;:= GLOBAL.FINDLENGTH (FILELIST);

FILE_LIST_NAME(1..LENGTH) := FILELIST (1) (1..LENGTH4);

open (F, in-.file, FILELIST-NAME (l..LENGTH-));

while not ENDý_OF FILE (F) loop

GETFILENAME (FELE-NAME, LAST, F);

ADALEXIO.OPENINPUT (FILE-NAME (L.LAST));
ADALEX_IO.CREATE_OUTPUT;,

new -ine;
put-ine C' Starting parse)

ADA_-LEX.Iinenum;
PARSER.yyparse;

169

new-fine;
putline C' Finished parse)

ADA-LEXJO.CLOSEjNPUJT;
ADAL.EXIO.CLOSEOUTPUT;

end loop;

end STARTPARSE:

procedure STARTCOUNT is

begin

SETPRECbENCE.A..E;

if GLOB3AL.RECORD)_FLAGS.PANEL2.REPORTF then
SETPRBCEDENCEJ..;

end if-,

GLOBAL.OPENOtUTFLE;

S TARTPARSE;

REPORTý_PACYKAGE.DETERMINEWHICHREPORT;

end STARTCOUNT;

end TOOLPACKAGE;

170

REPORTPKGS.A

--*Programmed

with GLOBAL,
TAE,
TEXTIO,
GENERICCOUNTS;

use TAE,
GLOBAL,
TEXTIO;

package REPORTPACKAGE is

type TYPE_NUMBERTYPE is range 1.. 5;
T2_NUMBER : TYPENUMBERTYPE;

type NAME-REPORTTYPE is (REPORT_A, REPORT_B, REPORTC,
REPORTD, REPORTE, REPORTF);

REPORTNAME : NAMEREPORTTYPE;

procedure DETERMINEWHICHREPORT;

function RETRIEVE_2D_1 (TYPE_ : STMTTYPE;
TYPE_2 : HOWPRODUCED;
TYPE_3 ORGIN;
TYPE_4 USAGE;
TYPE_5 DEVELOPMENTSTATUS;
TYPE_6 : NAMEREPORT TYPE) return natural;

function RETRIEVE_2D_2 (TYPE_1 : STMTTYPE;
TYPE_2 USAGE;
TYPE_3 HOW_PRODUCED;
TYPE_4 ORGIN;
TYPE_5 : DEVELOPMENT STATUS;
TYPE_6 NAMEREPORTTYPE) return natural;

function RETRIEVE_2D_3 (TYPE_I : ORGIN;
TYPE__2 HOWPRODUCED;
TYPE_3 STMTLTYPE;
TYPE_4 USAGE;
TYPE_5 DEVELOPMENTSTATUS;
TYPE_6 NAME_REPORTTYPE) return natural;

function RETRIEVE_2D_4 (TYPE_1 : ORGIN;
TYPE_2: STMTTYPE;
TYPE_3 : HOWPRODUCED;

171

TYPE_4 :USAGE;
TYPE_5 DEVELOPMENTSTATUS;
TYPE_6 NAME-REPORTJTYPE) returnnaftural;

function RETRIEVE_-2D_-5 (TYPE-1 :ORGIN;
TYPE_2 USAGE;
TYPE_3 :STMTTYPE;
TYPE_4 HOWPRODUCED;
TYPE_5 DEVELOPMENT-.,.STATUS;
TYPE_6 :NAMEREPORL.TYPE) return natural;

function RETRIEVE_2DL6 (TYPE-1 : ORGIN;
TYPE_2 : DEVELOPMENT-_STATUS;
TYPE_3 : STMTffYPE;
TYPE-4 : HOW -PRODUCED;
TYPE_5 : USAGE;
TYPE-6 : NAMEREPORT.TYPE) return natural;

function RETRIEVE_2D_7 (TYPE_1 : USAGE;
TYPE_2 :HOWPRODUCED;
TYPE_3 :STMT_-TYPE;
TYPE_4 :ORGIN;
TYPE_5 :DEVELOPNIENT..STATUS;
TYPE_6 :NAMEREPORTJYPE) returnnatural;

function RETRIEVE_2Dý_8 (TYEJ : DEVELOPMENTSTATUS;
TYPE_2: STMTTYPE;
TYPEý_3 :HOW-PRODUCED;
TYPE_4 :ORGIN;
TYPE_5 :USAGE;
TYPE_6 NAMEREPORTJTYPE) returnnatural;

function RETRIEVE_2D_9 (TYPEI : DEVELOPMENTSTATUJS;
TYPE,_2 :USAGE;
TYPE_3 :STMTTYPE;
TYPE_4 :HOW-PRODUCED;
TYPE_5 ORGIN;
TYPE_6 :NAME_REPORTTYPE) returnnatural;

function RETRIEVE_2Dý_10 (TYPE_1: DEVELOPMENTSTATUS;
TYPE_2 : HOWPRODUCED;
TYPE_-3 : STMvT_-TYPE;
TYPE_4 : ORGIN;
TYPE_5 : USAGE;
TYPE_6 : NAMIE_REPORT _TYPE) return natural;

function RETRIEVE_3D_1 (TYPE_1 : USAGE;
TYPE_2 :HOWPRODUCED;
TYPE_3 :ORGIN;
TYPE,_4: STMT_-TYPE;
TYPE_5 DEVELOPMENTSTATUS;

172

TYPE6 :NAMIEREPORTJTYPE) return natural;,

function RETRIEVE3D_2 (TYPEJ 1 USAGE;
TYPE_2 :HOWPRODUCED;
TYPEJ DEVELOPMENT-STATUS;
TYPEA_ ORGIN;
TYPE...: STMT_-TYPE;
TYPE_6 :NAMIE..REPORTý_TYPE) returnnatural;

function RETRIEVE_3D_3 (TPE_1 : DEVELOPMIENT_STATUS;,
TYPE_2 HOWPRODUCED;
TYPE_3 ORGIN;
TYPEA STMTTYPE;
TYPEJ USAGE;
TYPE...6 NAME_REPORTJYPE) return natural;

function RETRIEVE_3D_4 (TYPE_1 : DEVELOPMIENT_-STATUJS;
TYPE_2 USAGE;
TYPEJ ORGIN;
TYPE_4 HOWPRODUCED;
TYPE.5 SITMTTYPE;
TYPE_6 NAMEREPORTTYPE) returnnatural;,

function CHECK_2D_1 return TYPE-NUMBERTYPE;

function CHECK_2D_2 return TYPEý_NUMBERTYPE;

function CHECK_2D_3 return TYPE..NUMBERTYPE;

function CHECK_2D_4 return TYPENUMBERTYPE;

function CHECK_3D_1 return TYPENUMBERTYPE;

function CHECK_3D_2 return TYPELNUMBERTYPE;

function CHECK_3D_3 return TYPENUMBERTYPE;

function CHECK_3D_4 return TYPEJ.UMBERTYPE;

procedure HEADING-STMLýTYPE (ROWPOSITION: positive);

procedure HEADING-ORGIN (ROWPOSMON: positive);

procedure HIEADINGUSAGE (ROWPOSITON: positive);

procedure HEADING,_DEV_STATUS (ROWJ'OSMTON: positive);

package INTEGERIN_OUT is new integerjo (integer);
use INJTEGERINOUT;

package ENUMERATIONIN..OUT is new ENUMIERATIONTO (STMTLTYPE);

173

use ENUMERATIONLIN.OUT;

package RETRIEVE_ 1_21) is new GENERICCOUNTS (FIRST_-TYPE => STML-TYPE,
SECONDTYPE => HOW-PRODUCED,
ITHRDLTYPE => ORGIN,
FOURTH_TYPE => USAGE,
FIUMHTYPE => DEVELOPMIENTSTATUS,
REPORTTYPE => NAME_REPORTTYPE,
TJ4IJMBER_TYPE => TYPENUMBERTYPE,
RETRIEVE => RETRIEVE 2DI 1
CHECK_TYPE_2 => CHECK_2D1)l
CHECKTYPE_3 => CHECK_3Dj,.
PRINTROWHEADING => HEADINGSTMT -TYPE);

package RETRIEVE_2_21) is new GENERICSOUNTS (FIRST_TYPE => STM1LTYPE,
SECONDTYPE => USAGE,
llfTHIRDYPE => HOW_PRODUCED,
FOURTHj_TYPE => ORGIN,
FIFTHTYPE => DEVELOPMENT_STATUS,
REPORTý_TYPE => NAME_-REPORTTYPE,
T'_NUMBER_TYPE => TYPE-NUMBERTYPE,
RETRIEVE => RETRIEVE_2D-2,
CHRECKTYPE_-2 => CHECK_2Dj3,
CHECKTYPE_3 => CHECK_9D_I,
PRINTROW_HEADING => HEADINGSTMTTYPE);

package RETRIEVEý_3_21) is new GENERICCOUNTS (FIRST_-TYPE => ORGIN,
SECOND_TYPE => HOWPRODUCED,
ITHRD-TYPE => STMTTYPE,
FOURTHTYPE => USAGE,
FIFTHTYPE => DEVELOPMENTSTATUS,
REPORTTYPE => NAMEREPORTTYPE,
T_NUMBER_TYPE => TYPENUMBERTYPE,
RETRIEVE => RETRIEVE_2D-3.
CHECK_TYPE_2 => CHECK_2D_1,
CHECKTYPE_3 => CHECK_3D_2,
PRINT ROWHEADING => HEADINGORGIN);

package RETRIEVE_4_21) is new GENERICCOUNTS, (FIRSTTYPE => ORG IN,
SECOND_TYPE => STMTTYPE,
THIRI_TYPE => HOW_PRODUCED,
FOURTHý_TYPE => USAGE,
FIFTHTYPE => DEVELOPMENTý_STATUS,
REPORTTYPE => NAME_-REPORTTYPE,
T_NUMBER_TYPE => TYPENUMBERTYPE,
RETRIEVE => RETRIEVE_2D_4,
CHECKTYPE-2 => CHECK_2D_2,
CHECKTYPE93 => CHECK_3D_3,
PRINT -ROW_-HEADING => HEADINGORGIN);

package RETRIEVE_5_21) is new GENERICCOUNTS (FIRSTTYPE => ORGIN,

174

SECONDTYPE => USAGE,
THIRDJ)ý_YPE => STMT_TYPE.
FOURTHJTYPE => HOWPRODUCED,
FIFTHTYPE => DEVELOPMENT-STATUS,
REPORTJTYPE => NAME-REPORTTYPE,
TNUMBERTYPE => TYPENUMBERTYPE,
RETRIEVE => RETRIEVE_-2D-5,
CHECKTYPE_2 => CHECK_2D-3,
CHECKTYPE_3 => CHECK_3D_2,
PRINT..ROW.HEADING => HEADINGORGIN);

package RETRIEVEA6.2D is new GENERIC_COUNTS (FJRSTJyPE => ORGIN,
SECONDTYPE => DEVELOPMENTSTATUS,
T7HIRDTYPE => STMTTYPE,
FOURTH-TYPE => HOW-PRODUCED,
FIFLTHYPE => USAGE,
REPORT-TYPE => NAMEREPORTTYPE,
TNUMBERTYPE => TYPENUMBERTYPE,
RETRIEVE => RETRIEVE_2D...6,
CHECKTYPE_-2 => CHECK_2D_4,
CHECKTYPE_ý3 => CHECK_3D_2,
PRINT..ROWHEADING => HEADING_OQRGIN);

Package RETRIEVE_7_21) is new GENERIC_-COUNTS (FIRST_TYPE => USAGE,
SECOND_TYPE => HOWPRODUCED,
TTHIRDTYPE => STMTTYPE,
FOURTILTYPE => ORGIN,
FIFTHTYPE => DEVELOPMENT_STATUS,
REPORT _TYPE => NAMEREPORTý_TYPE,
T_-NUMBERTYPE => TYPENUMBE&-TYPE,
RETRIEVE => RETRIEVE_21)37,
CHECKTYPE_2 => CHECK_-2D_-1,
CHECKTYPE_3 => CHECK_3Dý_2,
PRINL-ROWHEADING => HEADINGUSAGE);

package RETRIEVE 82D is new GENERIC_COUNTS (FIRSTJTypE =>
DEVELOPMENT..STATUS,

SECONDTYPE => STMTTYPE,
THIRDTYPE => HOW_PRODUCED,
FOURTHTYPE => ORGIN,
FIFTILYPE => USAGE,
REPORT-TYPE => NAMEREPORTTYPE,
T'_NUMBER_TYPE => TYPEý_NUMBERJTYPE,
RETRIEVE => RETRIEVE_2D_8,
CHECK-TYPE-2 => CHECK_2D_2,
CHECKTYPE_3 => CHECK_3D-3,
PRINT-ROWHEADING => HEADING_DEV.STATUS);

package RETRIEVE_9_21) is new GENERIC_COUNTS (FIRSTTYPE =>
DEVELOPMIENT STATUS,

SECONDTYPE => USAGE,

175

THIRD._YPE => STMT rTYPE,
FOURnTHTYPE => HOW.PRODUCED.
FIFTHLTYPE => ORGIN,
REPORT TYPE => NAME_-REPORTTYPE,
'TjNUMBERTYPE => TYPE_NUMBE&_TYPE,
RETRIEVE => RET7RIEVE_-2D_9,
CHECKTYPE_2 => CHECK_2D9,3
CHECKTYPE_3 => CHECK_3D-2.
PRINT1ROWHEADING => HEADING...DEVSTATUS);

package REWJIEVEJO....2D is new GENERIC_COUNTS (F`IRSTJYPE =>
DEVELOPMENT]_STATUS,

SEWlND..TYPE => HOWPRODUCED,
THIRD-TYPE => STMTTYPE,
FOURTITYPE => ORGIN,
FIFLTHYPE => USAGE,
REPORTTYPE => NAME_REPORTTYPE,
T NUMBER_-TYPE => TYPE..NUMBERTYPE,
RETRIEVE => RETRIEVEL2D_1O,
CHECKJTYPE_2 => CHECK...2D_1,
CHECKTYPE_3 => CHECKJD_2,
PRDNT7_ROWIEADING => HEADINGDEV_-STATUJS);

package RETRIEVE_1_3D) is new GENERICCOUNTS (FIRST-TYPE => USAGE,
SECOND_TYPE => HOW_-PRODUCED.
THIRD-TYPE => ORGIN,
FOURTHJYPE => STMT_-TYPE,
FIFTLTYPE -=> DEVELOPMENT_STATUS,
REPORTTYPE => NAME,_REPORTTYPE.
TJ4NUMBERTYPL => TYPE,_NUMBER_TYPE,
RETRIEVE => RETRIEVE_-3DI,
CHECKTYPE_2 => CHECK-2DJ,.
CHECK_TYPE_3 => CHECK3D-1,
PRINTROW_HEADING => HEADING_USAGE);

package RETRIEVE_2,_3D) is new GENERIC -COUNTS (FIRST-TYPE => USAGE,
SECONDTYPE => HOWPRODUCED,
THIIRDý_TYPE => DEVELOPMENTý_STATUS,
FOURTHTYPE => ORGIN,
FIFTHTYPE => STMTJYPE,
REPORTTYPE => NAMEREPORT_-TYPE,
T..NUMBERTYPE => TYPE,_NUMBERTYPE,
RETRIEVE => RETRIEVE_3D_2.
CHECKTYPE_2 => CHECK...2DJ,
CHECK.-TYPE,_3 => CHECK_3D_4,
PRINTROWHEADING => HEADINGUSAGE):

package RETRIEVE_3_3D) is new GENERIC-COUNTS (FIRST-TYPE =>
DEVELOPMENT_-STATUS,

SECONDTYPE => HOW_PRODUCED,
THIRD-TYPE => ORGIN,

176

FOURTH_TYPE => STMT_-TYPE,
FIFTH TYPE => USAGE,
REPORTTYPE => NAMýE_REPORT_TYPE,
TNUMBERTYPE => TYPE_NUMBERJTYPE,
RETRIEVE => RETRIEVE_3D_3,
CHECKTYPE_2 => CH1ECK_2D_I,
CHECKTYPE_3 => CHECK_3D1)j
PRINTROWHEADING => HEADINGDEVSTATUS);

package RETRIEVE_4_3D is new GENERICCOUNTS (FIRSTTYPE =>
DEVELOPMENT-STATUS,

SECONDJYPE => USAGE.
THIRDTYPE => ORGIN,
FOURTHJTYPE => HOWPRODUCED,
FIFTHTYPE => STMT_-TYPE,
REPORTTYPE => NAMEREPORTTYPE,
TNUMBERTYPE => TYPENUNMERJTYPE,
RETRIEVE => RET1RIEVE_3D_4
CHECKTYPE_2 => CHECK -2D_-3,
CHECKTYPE_3 => CHECK.JD_1,
PRINTROWHEADING => HEADINGDEVSTATUS):

end REPORTPACKAGE;

177

REPORTPKG-B.A

-- _Programmed

package body REPORTPACKAGE is

function CNTEST (D in DEVELOPMENTSTATUS;

INCOUNTý_ARRAY: in COUNT_.ARRAYJTYPE) return integer is

TEMPýCOUNT :integer :=0;

begin

for S in STMT_TYPE'FLRST.. STMT_ýTYPE'LAST loop
for H in HOWPRODUCED'FLRST .. HOWPRODUCED'LAST loop

for 0 in ORGIN'FIRST .. ORGIN'LAST loop
for U in USAGE'FIRST. USAGE'LAST loop

TEMIP_COUNT: TEMPý_COUNT + INCOUNTARRAY (S, H, 0, U, D)-,

end loop;
end loop;

end loop;
end loop;

return TEMPCOUTNT;

end CNTEST;

function RETRIEVE_2D1)- (TYPE_1: STMT_-TYPE;
TYPEL2 :HOWPRODUCED;
TYPE_3 :ORGIN;
TYPE_4 :USAGE;
TYPE_5: DEVELOPMENTSTATUS;
TYPE_6 :NAMEREPORTTYPE) return natural is

TEMP :natural: 0;

begin

cawe TYPE_6 is

178

when REPORTA =>
TEMP: COUNTARRAY.A (TYPE 1, TYPE 2, TYPE-3, TYPE 4, TYPE-5);

when REPORTB =>
TEMP := COUNT_ARRAY..B (TYPEI TYPE_2, TYPE-3, TYPE 4, TYPE 5);

when REPORTC=>
TENT: COUNT_ARRAY_.C (TYPEJ, TYPE..2, TYPEJ3 TYPE 4, TYPE-5);

when REPORTD =>
TEMP := COUNTý_ARRAYD (TYPE 1, TYPE 2, TYPEJ3 TYPE_4, TYPE 5);

when REPORTE =>
TEMIP: COUNT_ARRAY..E (TYPE 1, TYPE 2, TYPE 3, TYPE 4, TYPE5),

when REPORT_F =>
TEMIP: COUNT_ARRAYJF (TYPEJ1 TYPE_2, TYPE 3, TYPEA4, TYPES5);

end case;

return TEMP;

end RETPRIVE_2DP;

function RETRIEVE_2D_2 (TYPE-1 STMTTYPE;
TYPE_2 : USAGE;
TYPE_3 : HOWPRODUCED;
TYPE_4 : ORGIN;
TYPE_5 : DEVELOPMIENTSTATUS;
TYPE_6 : NAMIEREPORT-.TYPE) return natural is

TEMP : natural := 0;

begin

case TYPE_6 is
when REPORTL.A =>

TEMP := COUNT_ARRAY A (TYPE_1 TYPE 3, TYPE 4, TYPE_2, TYPE_.5);
when REPORTB =>

TEMP: COUNTý_ARRAY-B (TYPEJ1 TYPE-3, TYPE 4, TYPE 2, TYPE 5);,
when REPORT...C =>
TEMP := COUNT_ARRAY-C (TYPE_1 TYPE 3, TYPE..4, TYPE 2, TYPE5);,

when REPORTJ)D =>
TEMPD:= COUNTý_ARRAYJ) (TYPEJ, TYPE 3, TYPE 4, TYPE 2, TYPES5);

when REPORT..E =>
TEMP := COUNTARRAY E (TYPEI TYPE 3, TYPE 4, TYPE 2, TYPE_ 5);

when REPORT_F =>
TEMP:= COUNTARRAYF (TYPEý_I, TYPE 3, TYPEA4 TYPE_2, TYPE-5);

end case;

return TENT;

end RETRIEVE_2D_2;

179

function RETRIEVE_2D_3 (TYPE_1 : ORGIN;
TYPE_2 HOW_PRODUCED;
TYPE_3 STMTTYPE;
TYPE_4 USAGE;
TYPE_5 DEVELOPMENTSTATUS;
TYPE_6 NAMEREPORT_TYPE) return natural is

TEMP : natural:= 0;

begin

case TYPE_6 is
when REPORTA =>
TEMP:= COUNT_ARRAYA (TYPE_, TYPE_2, TYPEl, TYPE_4, TYPE_5);

when REPORTB =>
TEMP:: COUNT_ARRAYB (TYPE_3, TYPE_2, TYPE 1, TYPE_4, TYPE_5);

when REPORT_C =>
TEMP:= COUNT_ARRAYC (TYPE_3, TYPE_2, TYPE_1, TYPE_4, TYPE_5);

when REPORTD =>
TEMP:= COUNT_ARRAY_) (TYPE_3, TYPE_2, TYPE1, TYPE_4, TYPE_5);

when REPORTE =>
TEMP:= COUNT_ARRAYE (TYPE_3, TYPE_2, TYPE1, TYPE_4, TYPE_5);

when REPORTF =>
TEMP:= COUNT_ARRAYF (TYPE_3, TYPE_2, TYPE-1, TYPE_4, TYPE_);

end case;

return TEMP;

end RETRIEVE_2D_3;

function RETRIEVE_2D_4 (TYPE) : ORGIN;
TYPE_2 STMTTYPE;
TYPE_3 HOWLPRODUCED;
TYPE_4 USAGE;
TYPE_5 DEVELOPMENTSTATUS;
TYPE_6 NAMEREPORT TYPE) return natural is

TEMP : natural:= 0;

begin

case TYPE_6 is
when REPORTA =>
TEMP :=COUNTARRAYA (TYPE_2, TYPE_3, TYPE_1, TYPE_4, TYPE_5);

when REPORTB =>
TEMP:= COUNTARRAYP (TYPE_2, TYPE_3, TYPE1, TYPE_4 TYPE_5);

when REPORT_C =>

180

TEMP: COUNTARRAY_.C (TYPE -2, TYPE3..3 TYPEJ,. TYPE...4, TYPE-.5);
when REPORT.)) =>
TEMP: COUNL.ARRAY.... (TYPE_2, TYPE_.3, TYPE-., TYPE-4, TYPEJ..);

when REPORT...E =>
TEMP: COUNT_-ARRAY-.E 9TYE..2, TYPEJ3, TYPE-1, TYPEA, TYPEJ..);

when REPORTF =>
TEMP: COUNTARRAY.Y (TYPE 2, TYPE-3, TYPEL1, TYPE-4, TYPE...);

end case;

rettni TEMIPh,

end R.EIREVE,.2D_4;

function RETRIEVE_2D_5 (TYPE-I ORGfN;
TYPE_2 USAGE;
TYPE_3 STMTTYPE;
TYPE_4 HOWPRODUCED;
TYPE~j DEVELOPMIENTSTATUS;
TYPE_6 NAME_REPORT _TYPE) return natural is

TEMP :natural: 0;

begin

case TYPE.,.6 is
when REPORT...A =>

TEMP: COUNT_ARRAY..A (TYPEJ, TYPEA4 TYPE.), TYPE_2, TYPEJ.);
when REPORLB =>
TEMlP: COUNTARRAY...B (TYPE_3, TYPEA.4 TYPE.)I, TYPE_2, TYPE...5);

when REPORTýC =>
TEMP: COUNT...ARRAY.C (T7YPE 3, TYPE,.4, TYPE.), TYPE_2, TYPE..5);

when REPORT.)) =>
TEMP: COUNTý_ARRAY.)) (TYPE_3, TYPE,.4, TYPE.), TYPE_2, TYPE-5);

when REPORT...E =>
TEMP: COUNTý_ARRAY E (TYPE_3, TYPE_4, TYPE.), TYPE-2, TYPE 5):

when REPORTY. =>
TEMP: COUNTARRAYJF (TYPE_3, TYPE3, TYPE.), TYPE_2, TYPE-.5);

end case;

return TEMP;

end RBTRIEVE,2D_5;

function RETRIEVE_21)_6 (TYPEJ 1 ORGIN;
TYPE_2 DEVELOPMENTSTATUS;
TYPE_3 STMLITYPE;
TYPE_-4 HOWPRODUCED;

181

TYPES: USAGE;

TYPE_6i NAME-REPORT-TYPE) return naftura is

TEMP :natural 0;

begin

case TYPE-6 is
when REPORLýA =>
TEMP -COUNT-..ARRAY.A (TYPE-3, TYPE.A TYPEJ, TYPE 5, TYPE,2);

when RBPORT..B =>
TEMP: COUNT_.ARRAY... (lYPEJ, TYPE_4, TYPEJ_, TYPE-5, TYPE-2);

when REPORTý_C =>
TEMP: COUNTARRAY•C (TYPE-3, TYPE-4, TYPEJ, TYPES5, TYPE...2);

when REPORT_) =>
TEMP: COUNT_ARRAY..D (TYPE_3, TYPEA, TYPEJ, TYPE 5, TYPE,2);

when REPORT _E =>
TEMP: COUNTARRAYE (TYPEL3, TYPE4, TYPEJ, TYPEL5, TYPE-2);

when REPORT-Y =>
TEMP: COUNTARRY F (TYPEL3, TYPEA, TYPEJ, TYPES5, TYPE,.-2);

end case;

return TEMP;

end RBTREEVE_2D....;

function RETRIEVE_.2D7ý (TYPEI :USAGE;
TYPE_2: HOWý_PRODUCED;
TYPE-3 STMT..TYPE;
TYPE_4 ORGIN;
TYPES DEVELOPMENTSTATUS;
TYPE_-6 NAMERBPORT _TYPE) return natura is

TEMP :natural 0;

begin

case TYPE_6 is
when REPORT_A =>
TEMP: COUNTARRAYA (TYPE 3, TYPE 2, TYPE_4, TYPE_1, TYPES5);

when REPORT._B =>
TEMP: COUNT...ARRAY-B (TYPE, 3, TYPE-.2, TYPE-4, TYPEI TYPE-.5);

when REPORTC =>
TEMP: COUNTARRAYC (TYPE 3, TYPE-2, TYPEA_, TYPE_1 TYPES5);

when REPORLD =>
TEMP: COUNTARRAY-D (TYPE-3, TYPE .2, TYPEA, TYPEL1, TYPE-.5);

when REPORTE =>
TEMP: COUNTARRAYE (TYPE-3, TYPE_2, TYPE,4, TYlPEL, TYPE....);

when REPORT_F =>

182

TEMP: COUNTý_ARRAY...F (TYPE...3 TYPE...2. TYPEL4. TYPE_1, TYPE..5);

end case;

return TEMWh

end RETRIEVE_21_7;

function RETRIEVE_2D_8 (TYPE_1 : DEVELOPMNTNI_STATUS;
TYPE_2 : STMT _TYPE;
TYPE_3 : HOWLPRODUCED;
TYPEý_4 : ORGIN;
TYPE_5 : USAGE;
TYPE_6 : NAMIEREPORT TYPE) return natural is

TEMP : raitural:=O0;

begin

case TYPE,_6is
when REPORT...A =>

TEMP := COUNT_ARRAY-A (1YPE...2, TYPEJ, TYPE_4, TYPEJ, TYPEJ);
when REPORTB =>

TEMP := COUNTARRAY3.. (IYPE,2, TYPE...), TYPEA, TYPEJ. TYPE-1);
when REPORT_.C =>

TEMP := COUNT_-ARRAY...C frYPE_2, TYPE..), TYPEA, TYPEJ., TYPEJ);
when REPORTJ)D =>

TEMP := COUNTARRAY-D (rYPE,2, TYPE..). TYPE-4, TYPE..., TYPEJ);
when REPORT...E =>
TEMP := COUNT-.ARRAYE C1'YPE-2, TYPE,.), TYPEA, TYPEJ,.5 TYPEJ);

when REPORT..F =>
TEMNP:= COUNT-ARRAY-F (TYPEL2, TYPE_3, TYPE.A, TYPES, TYPE-1);

end case;

return TEMP;

end RETRIEVE_2D_$;

function RETRIEVE_2D_9 (TYPEJ : DEVELOPMIENT _STATUS;
TYPE_2 :USAGE;
TYPE_3 :STMTTYPE;
TYPE_4 :HOWPRODUCED;
TYPE_5 :ORGIN;
TYPE...6 :NAMIEREPORT TYPE) return natural is

TEMIP :natural := 0;

begin

183

casn TYPE_.6 is
when REPORTA =>
TEMP := COUNT_ARRAy_.A (TYPEJ, TYPE.A, TYPEL5, TYPE 2, TYPEJl);

when REPORTB =>
TEMP :- COUNTT-ARRAY... (TYPEJ.., TYPEA_, TYPEJ., TYPE-2, TYPE-1);

when REPORTS.. =>
TEMP - COUNT-ARRAY-C (IYE_3, TYPEA, TYPE_5, TYPEL2, TYPE-1);

when REPORT-D =>
TEMP: COUNT_-ARRAYP aTYPE-3, TYPEA.4 TYPEJ.., TYPE_2. TYPEl);

when REPORT..E =>
TEMP: COUNT..,ARRAY_.E (TYPE9_, TYPEA, TYPE_5, TYPEL2, TYPE 1);

when REPORT_F =>
TEMP: COUNTARRAYF (TYPE9_, TYPEA, TYPEL5, TYPEL2, TYPE 1);

end case;

return TEMP,

end RETRIEVE_2D-9;

function RETRIEVE-2DJLO ('IYPE__I :DEVELOPMENTSTATUS;
TYPE_2 :HOWPRODUCED;
TYPE_3: STMILTYPE;
TYPE_4 ORGIN;
TYPE_5 :USAGE,
TYPE_6 :NAMEREPORT -TYPE) return natural is

TEMP: natural a 0

begin

case TYPE_6 is
when REPORT_A =>

TEMP:=COUNT_-ARRAY-A (TYPE...3, TYPE...2. TYPE.4, TYPEJ, TYPE 1);
when REPORTB =>

TEMP:=COUNT_-ARRAY3' (TYPE3, TYPE_2, TYPE_4, TYPES5, TYPE 1);
when REPORTC =>
TEMP := COUTNT_ARRAY_.C (TYPE.3, TYPE_2, TYPEI, TYPE5, TYPE 1);

when REPORTD) =>
TEMP: COUNT-ARRAY-D (TYPE 3, TYPE2, TYPE_4, TYPEL5, TYPEJ);

when REPORTýE =>
TEMP := COUNTARRAY E (TYPEL3, TYPE-2, TYPE,_4, TYPEJ_, TYPEJ);

when REPORTF =>
TEMP: COUNT -ARRAY F (TYPE 3, TYPE_2, TYPE_4, TYPES5, TYPE 1);

end case;

return TEMP;,

end RETRIEVE_2D_1;

184

function RETRIEVE_3D_1 (TYPEJ_ USAGE;
TYPE_2 :HOW_PRODUCED;
TYPE._3 :ORGIN;
TYPE_4 :STMLýTYPE;
TYPEL5 :DEVELOPMIENT_.STATUS;
TYPE_6 :NAMEREPORT3TYPE) returnanatrlis

TEMP :natural ;

begin

case TYPE_6 is
when REPORT-A =>
TEW:= COUNLARRAY.A CTYPE_4. TYPE 2. TYPE_3, TYPEJ, TYPE-5);

when REPORTB =>
TEMP: COUNT_ARRAY-B (TYE_.A TYPE...2, TYPE-3, TYPE_1 TYPE,5):,

when REPORTS_ =>
TEMp: COUNTARRAYC (TYPEA_, TYPE._2, TYPEL.3 TYPE_1, TYPEL5);

when REPORT-D =>
TEMP: COUNTARRAY]) (TYPE-4, TYPE_2, TYPEL3, TYPE 1, TYPE-5);

when REPORTE =>
TEMP: COUNL-ARRAY-E (TYPEA, TYPEL2. TYPE...3, TYPEJ, TYPE...5):

when REPORT.Y =>
TEMP: COUNT..ARRAY...F (TYPEý_4, TYPE,_2, TYPE 3, TYPEJ, TYPE...5);

end case;

return TEMP,

end RETRIEVE_3D];,

function RETRIEVE_3D_2 (TYPE_1 : USAGE;
TYPE_2: HOWPRODUCED;
TYPEý_3 DEVELOPMIENT _STATUS;,
TYPE_4 ORGIN;
TYPE_5 STMTý_TYPE;
TYPE_6 NAMEREPORTfTYPE) return natural is

TEMP :natural 0;

begin

case TYPE_6 is
when REPORT...A =>
TEMP: COUNTARRAY_.A (TYPEJ.., TYPE 2, TYPE-4, TYPE 1, TYPE_3);

when REPORT...B =>
TEMP: COUNT_-ARRAY... (TYPE 5, TYPE_2, TYPE 4 TYPEJ1 TYPE_);

185

when REPORTC =

TEMP u COUNLARRAYC (TYPE_S, TYPE_2, TYPE-4, TYPE-1, TYPE)3);
when REPORT-P. =>
TEMP :- COUNT-.ARRAY-P. (TYPES, TYPE_2, TYPE.A, TYPE-I, TYPE .3);

when REPORTR. =>
TEMP: COUNT-ARRAY-A (TYPEL5, TYPE,..2, TYPEA4 TYPE_1, TYPE_3);

when REPORT-F =>
TEMP -= COUNT_ARRAYJ (TYPE_.5, TYPE2ý, TYPEA, TYPE1, TYPE 3);

end case;

return TEMP,

end RETRIEVEJD-2;

function RETRIE YEJD_3 (TYPEJ DEVELOPMENTý_STATUS;
TYPE_ý2: HOWPRODUCED;
TYPE_3 : ORGIN;
TYPEA4 : STMLTYPE;
TYPEJ.. : USAGE;
TYPE_6 : NAMERkEPORT-TYPE) return naural is

TEMP : natural := 0;

begin

case TYPEý_6 is
when REPORT...A =>
TEMP := COUNTARRAYA (TYPE-4, TYPEL.2, TYPE_3, TYPE_5, TYPE)-);

when REPORTLB =>
TEMP := COUNTARRAY... (TYPE_4 TYPE_2, TYPE-3, TYPE 5, TYPE)I);

when REPORTS. =>
TEMAP:= COUNT..ARRAY-C (TYPE-4, TYPEL2, TYPE_3, TYPE_5, TYPELI);

when REPORT))D =>
TEMP := COUNTARRAYD (TYPE _4, TYPE_ .2, TYPE 3, TYPES5, TYPE)1);

when REPORTE =>
TEM*P: COUNTARRAY-E (TYPE_4, TYPE_2, TYPEJ, TYPE_5, TYPE_1);

when REPORTF =>
TEMP := COUNTARRAY-F (TYPE_4 TYPE_-2, TYPE-3, TYPES5, TYPE)I);

end case;

reurn TEMP;

end RETRIE YE 3D3;

function RETRIEVE_3D_4 (TYPE)- : DEVELOPMENT _STATUS;
TYPE -2 :USAGE;
TYPE_-3 :ORGIN;

186

TYPE_: HOWý_PRODUCED;
TYPE-.5 STMT..YP;
TYPE_.6 NAM4EEPORT.J7YPE) return natural is

TEMP :natural:=0;

begin

case TYPE..6 is
when REPORTJL =>
TEMP := COUNT_.ARRAYA (TYPE...5, TYPEA4 TYPE-.3, TYPE-2, TYPE-1);

when REPORLE_ =>
TEMP := COUNTARRAYB (TYPE-.5, TYPE4, TYPEJ, TYPE,3, TYPE-1);

when REPORT...C =>
TEMP := COUNT-ARRAY.C (I'YPEJ.., TYPE_4, TYPE),3 TYPE..2, TYPEJ);

when REPORTD =>
TEMP: COUNTARRYJ) (TYPEJ, TYPE4. TYPE)J, TYPE-2, TYPE-I);

when REPORTE =>
TEMOP: COUNTARRY3. (TYPE)J, TYPEL4. TYPE-3, TYPE -2. TYPE_1):

when REPORT_F =>
TMAP: COUNTARRAYF (TYPE_). TYPE_3, TYPE.3, TYPE-2, TYPEJ);

end case,

return TEMP;

end RETTIEVE,_DA;

function CHECK..2D-1 return TYPENUMBER_-TYPE is
7T2-NUTMBR :TYPELNUMBERJYPE := 1;

begin

return T2-NUMBER;

end CHECK.UDJ;

function CHECIQ2D...2 return TYPEJUNMBERTYPE is
72.NUMBER :TYPEYUMBERTYPE: 2;

begin

return 12 NUMBER;

e~nd CHECK.M..2D2

function CHECK_2D)3 return TYPE...NUMBERJTYPE is
T2..NUMBER :TYPELNUMBERTYPE: 3;

187

begin

Mumwi T2ZNUMBER

end CHECK_21)_3;

function CHECK..2D.A4 return TYPELNUMBERJYPE is
T2!NUMBER : TYPE_NUMBERTYPE:=4;

begin

MeumnT2 NUMBER;

end CHECK..2D.A4;

function CHjECK.3D_1 return TYPENUMBERT2YPE is
773..NUMBER : TYPENUMBER.TYPE := 5;

begin

return 73_NUMBER;

end CHECK_3D_1;

function CHECK-HD_2 return TYPE..NUMBER_-TYPE is
T3_NUMBER : TYPENUMBERTYPE: 2;

begin

return T3-NUMBER;

end CHECK_3D_2;

function CHECK_3D_3 return TYPE,_NUMBERTYPE is
13_NUMBER : TYPE,_NUMBERTYPE := 1;

begin

return T3_NUMBER;

end CHECK_3D_3;

function CHECK_3D_4 return TYPENUMBERTYPE is
T3..NUMBER : TYPENUMBERTYPE:=4;,

begin

188

return T3 NUMBER;

end CHECK_3D_4;

procedure HEADING STMT.TYPE (ROW_POSmON: positive) is

TEMP : integer := ROW.MOSMON - 1;

begin

if TEMP = 0 then
put (OUTFILE.TYPE, "Executable ");

elsif TEMP = 1 then
put (OUTFILETYPE, "Declarations ");

elsif TEMP = 2 then
putline (OUTFILE_TYPE, "Compiler dir- ");
put (OUILFILETYPE, "ectives ");

elsif TEMP = 3 then
put-fine (OUTFILETYPE, "Comments on ");
put (OUT_FILETYPE, "their own line ');

elsif TEMP = 4 then
put_line (OUT_FILE_TYPE, "Comments on ");
putjine (OUTFILE_TYPE, "lines with ");

put (OUT_FILEJYPE, "source code ");
elsif TEMP = 5 then
put.ine (OUTJILETYPE, "Banner and non-");
put (OUTFILEJTYPE, "blank spacers ");

elsif TEMP = 6 then
puLline (OUTFILE_TYPE, "Blank (empty) ");
put (OUT.F1LE_TYPE, "comments ");

elsif TEMP = 7 then
put (OUTJFLETYPE, "Blank lines ");

end if;

end HEADINGSTMT_TYPE;

procedure HEADINGCORGIN (ROW_POSIION: positive) is

TEMP : integer := ROWPOS1TION - 1;

begin

if TEMP = 0 then
putline (OUTFILETYPE, "New Work: no ");

put (OUTFILE_TYPE, "prior existence");
elsif TEMP = I then

189

puLline (OLITFILE_TYPE, "A previos v'er-)
putline (OUTýFJILETYPE, "sion, build,)

put (OUTJILEJ'-YPE, "or release)

elsif TEMP = 2 then
put (OUTJILEYPE "COTS

eWsiTEMP = 3 then
put (OUT..YIE...TYPE, "GFS

elsif TEMP =4 then
put (OUTJZLEJTYPE, "Another product");

elsif TEMP = 5 then
Putjine (OULFILEfTYPE, "A vendor suppi-");
putjine (OUT-FILETYPE, "ied language)
put (OUTJILEJYPE, "support library");

elsif TEMP = 6 then
Putjine (OUT..FIXLEYPE, "A vendor-suppi-");
putjine (OUT.YILE-TYPE, "ied operating")
put-line (OUT...FILE_.TYPE, "system or ")

put (OUT._FJILEYPE, "utility)

elsif TEMP = 7 then
Putjine (OUT-YILETYPE, "A local or mod--);
putjinie (OUT-ILE-TYPE, "ified language ");
pu~line (OULFJLE...TYPE, "support library");
Put.-ine (OUTIL.ETYPE, " or operating -);
put (OUTJILE..TYPE, "system)

elsif TEW = 8 then
Putjine (OUT FILEJTYPE, "Other commer- I);
put (OUT_FILE_-TYPE, "cial library")

elsif TEMP = 9 then
Putjine (OUT-FILE-TYPE, "A reuse library");
putjine (OULýFILETYPE, "(software -);
putline (OUFlILEffYPE, "designed for 1
put (OWUTIEý_TYPE, "reuse)

elsif TEMP = 10 then
put..line (OUT-JILE-.TYPE, "Other software)

Putjine (OUT....FREJYPE, "component or)

put (OUT_FILE_TYPE, "library ")
end if;

end HEADINGORGIN;

Procedure BEADING_ýUSAGE (ROWPOSMON: positive) is

TEMP integer .= ROW~pOSMON -1;

begin

if TENP = 0 then
Put..line (OUTFILEJYPE, "in or as part")
Put-ine (OULFYILEJYPE, "of the primary")

190

put (OUT_FILE_TYPE, "product ");
elsif TEMP = I then
putjline (OUTFILETYPE, "External to or
put-line (OUTFILETYPE, "in support of ");
putjline (OUT-FILETYPE, "the primary ");
put (OUT_FILETYPE, "product ");

end if;

end HEADING_USAGE;

procedure HEADING_DEV_STATUS (ROW_POSITION: positive) is

TEMP : integer := ROWPOSITION - 1;

begin

if TEMP = 0 then
putjline (OUTFILETYPE, "Estimated or ");
put (OUT_FILE_TYPE, "planned ");

elsif TEMP = 1 then
put (OUTFILETYPE, "Designed ");

elsif TEMP = 2 then
put (OUT_FILE_TYPE, "Coded ');

elsif TEMP = 3 then
putline (OUTjFILETYPE, "Unit tests corn-");
put (OUT_FILETYPE, "pleted ");

elsif TEMP = 4 then
put-line (OUTJILETYPE, "Integrated into");
put (OUTFILETYPE, "components ");

elsif TEMP = 5 then
putline (OUTFILETYPE, "Test readiness ");
put-line (OUTFILETYPE, "review corn- ");
put (OUT_FILETYPE, "pleted ");

elsif TEMP = 6 then
puLline (OUTFILETYPE, "Software (CSCI)");
put (OUT_FILE_TYPE, "tests completed");

elsif TEMP = 7 then
putline (OUTFILETYPE, "System tests ");
put (OUTFILETYPE, "completed ");

end if;

end HEADING_DEV_STATUS;

function FINDPRIORITY_F (N_STMTITYPE : in STMTTYPE) return integer is

COUNTER : integer := 1;
PRIORITYNUM : integer := 0;

191

begin

for F in PRIORITY_-ARRAYJ'range loop
if PRIORITY.ARRAY...F (F) = INSTMTý_TYPE then
exit;

else
COUNTER := COUWI ER + 1;

end if-,
end loop;

PRIORITY_-NUM: COUNTER;
retumi PRIORITYNUM;

end FINDPRIORITYF;

function COUNLTOTAL..LINES...A (INCOUNLTJOTALS: COUNTTOTALSTYPE) return

natural is

TEMP : natural;,

begin

TEMP:= IN_COUNTý_TOTALS.STMTI_NUMS.EXECTOTAL +
INý_COUNTTOTALS.STMTNUMS.DEC_-TOTAL +
INCOUNTTOTALS.STMrNUMS.PRAGMA_TOTAL;

return TEMP;

end COUTJOTAL,_LINES_A;

function COUNT TOTAL._LINES B (INCOUNTTOTALS :in COUNTTOTALSTYPE)

return natural is

TEMP :natural;

begin

TEMP= IN_-COUINTTOTALS.STMTNUMS.EXECTOTAL +
INCOUNTTOTALS.STMT_-NUMS.DEC_-TOTAL +
INCOUNTTOTALS.STMT_-NUMS.PRAGMATOTAL;

return TEMP;

end COUNT_TOTAL,_LINESB;

192

function COUNT_TOTAL_LINES C (INCOUNTTOTALS: in COUNTTOTALSTYPE)

return natural is

TEMP natural;

begin

TEMP: INCOUJNTOTALS.STMTI_NUMS.EXECý_TOTAL +
IN..COUNTTOTALS.STMTNUMS.DECý_TOTAL +
ThLCOUNTTOTALS.STMTl_NUTMS-PRAGMA_TOTAL +
IN COUNT_-TOTALS.ST-MT_NUMS.CMTS_ON_OWNTOTAL +
INCOUNT_-TOTALS.STMTNUMS.CM4TS_W_SRC_TOTAL;

return TEMP;

end COUINT_TOTAL._LMNS_.C;

function COUNTTOTAL_-LINES D (INCOUNTý_TOTALS: in COUNTTOTALSTYPE)

return natural is

TENP: natural;

begin

TEMP= INCOUINT_TOTALS.STMTNUMS.EXECý_TOTAL +
INCOUNTTOTALS.STMTNTUMS.DECý_TOTAL +
IN_COUNT_-TOTALS.STMTNUMS.PRAGMA_TOTAL;

return TEMP;

end COUINTTOTAL_LINESD;

function COUNT_-TOTALý_LINES E (IN_COUNT_TOTALS : in COUTNTTOTALSTYPE)

return natural is

TEMP : natural;

begin

TEMP: IN_COUTNTTOTALS.STMTNIJMS.EXECý_TOTAL +
INCOUNTTOTALS.STMT_-NUMS.DECTOTAL +

193

INCOUTNTJTOTALS.STMTY-NUMS.PRAGMATOTAL +
ThLCouNTTOTALs.sTmT_Nums.CMTs_ON_OWN__TOTAL +
INCOUINTTOTALS.STMTý_NUMS.CMTSW_SRC_TOTAL;

return TEMP;

end COUNTTOTALLINESE;

function COUNTTOTAL_LINES-F (INCOUNTTOTALS: in COUNTTOTALSTYPE)

return natural is

TEMP :natural: 0;

begin

if RECORD_-FLAGS-.Y.PANEL3.LINEI then
TEMP: TEMP + IN_-COUNTTOTALS.STMT_-NUMSýEXECýTOTAL;

end if;
if RECORD-JLAGSF.PANEL3LINE_3 then
TEMP= TEMP + INCOUNT-JOTALS.STMT_-NUMS.DECLTOTAL;

end if-,
if RECORDFLAGSY.PANEL3LINE_4 then
TEMP: TEMIP + 1N..COUNT-TOTALS.STMLINUMS .PRAGMATOTAL;

end if;
if RECORDFLAGS.Y.PANEL3 LINEý_6 then
TEMP= TEMP + INCOUNTTOTALS.STMTý_NUMS.CMTSONOWNLTOTAL;

end if;
if RECORD_-FLAGS-Y..PANEL3.LINE_7 then
TEMP:=TEMP +IN_ýCOUNT...TOTALS.STMT_-NUMS.CMTSWSRC-TOTAL,

end if;
if RECORD_-FLAGSJ.PANEL3JINE_8 then
TEMP= TEMP + IN_-COUNT-JOTALS.STMT_-NUMS.BANNERCMTS-TOTAL;

end if;
if RECORDFLAGS..Y.PANEL3.LINE_9 then
TEMP?: TEMP + INCOUNTJOTALS.STMTi_NUMS.EMPTY,.CmTS_TOTAL;

end if;
if RECORDFLAGS-J.PANEL3.LLNE 10 then
TEMP= TEMP + INCOUNTTOTALS.STMT_ýNUMS.BLANKLINESTOTAL;

end if;,

return TEMP;

end COUNT_TOTALLNES,_F;

194

procedure PRINT_.REPORTBEADERI is

MYJEMP : string (I..11) := (others =>')

begin

new-line (OUTJRLE.TYPE);
put (OUT...FILEJTYPE, " Report Name:)

put~ine (OUTF1LE_TYPE, RECORDFLAGS.PANEL2.REPORLHEADING (1)(l . 50));
put (OUT -FILE-JYPE, " File List used: ");
putjline (OUTYFILE_TYPE, RECORDFLAGS.PMNEL2.UINYILE...NAME (1)(l . 50))
put (OUT-JILE...TYPE, " Requested by: ");
putjine (OUT-FILE_TYPE, RECORDFLAGS.PANEL2.REQUESTOR (1)(l . 50));
new-line (OUTFILETYPE);
put~ine (OUTJILEý_TYPE, " Measured as: Physical source lines)

newjine (OUTFILETYPE);
put (OUT FILEJYYPE, " Delivered as:)

MY-TEMP := GLOBAL.RECORD_-FLAGS.PANEL6.DE-L_OPTION (1)(Il. I I)-

if MYTEMP = "Delivered a:" then
putjline (OUT_FILE_TYPE, "Delivered as source");

elsif MYTEMP = "Delivered i" then
put line (OUT_FILE_TYPE, "Delivered in compiled or executable form, but not as source");

elsif MYTEMP = "Under confi" then
putjine (OUTFILETYPE, "Under configuration control");

elsif MYJEMP = "Not under c" then
put line (OUT_FILE_TYPE, "Not under configuration control";

else
putline (OUT_FILE_TYPE, "Don't care");

end if;

new-line (OUTFILETYPE);

end PRINTREPORTHEADER-;

procedure PRINTREPORTHEADER_2 is

begin

new~line (OUT_ýFILETYPE);
put (OUTFILEJTYPE, "
put (OUýFJILE,.TYPE, " Total Total Individual");
newjine (OUT_FILE_TYPE);
put (0UT.ýFILE_TrYPE, " 1)
put (OUT -FILE_-TYPE, "Includes Excludes totals)
newjline (OUTFImLETYPE);

195

end PRINT_REPORTJ{EADER_2;

procedure PRINT_STMTý_HEADER is

begin

new-line (OULFILETYPE);
putline (OUT..FU....TYPE, "Statement type");
pu~line (OUTF1LE...TE, " When a line or statement contains more than");
putijine (OUT...FIL.ETYPE, " one type, clasify it as the type with the)

putjfine (OUTJELETYPE, " highest precedence.");
new-line (OUTLFILEJYP);

end PRINTSTMT....EADER;

procedure PRINTj_STMTTYPEjIlN (IN_COUNTTOTAL: in COUNTTOTALSTYPE;
REPORT_3YPE : in integer) is

begin

put (OUTn FILEJYPE, " 1 Executables Precedence =>)

if REPORT..TYPE > 0 then
put (OUTJILEJTYPE, "1");

else
put (OULFIL.E.TYPE, FIND...PRIORIT-Y.. (STMTTYPE'val (0)), width => 1);

end if;,
put (OUTý_FILEJPE, " XXXX
put (OUT_-FILEJTYPE, DINCOUNT_-TOTAL.STMT_-NUMSEXIECTOTAL, width => 10);
new-line (OUT-FILETfYPE);

end PRR4T..STMTTYPEIIN;

procedure PRINTý_STMT1_TYPEý_1_EX (REPORTJYPE : in integer) is
begin

put (OUTý_FILE-.TYPE, " I Executables Precedence =>")
if REPORT..YYPE > 0 then
put (OUTJIEYE M1

else
put (OUTY1LE.TYPE, FIND...PRIORITYF (STMTTYPE'val (0)), width => 1);

end if,
put (OUTý_ERILEYPE," XXXX 0");
newjine (OUTJ-FEIE_TYPE);

end PRIN4T STMTý_TYPE,_I_EX;

196

procedure PRINT_STMTl_TYPE_2 is

begin

put line (OUL-FIL.ETYPE, " 2 Nonexecutables)

end PRINTSTMTTYPE_2;

procedure PRDINT_STMTý_TYPE..33N (INCOUNTTOTAL:i COUNTý_TOTALSTYPE;
REPORTý_TYPE :in integer) is

begin

put (OUTJFILEffYPE, " 3 Declarations
if REPORT_TYPE > 0 then
put (OUTYREJIF-YPE, "2");

else
put (OUT..YLETYPE, FIND-PRIRITY-F (STMTTYPE'val (1)), width => 1);

end if;
put (OUTFILEJTYPE, " XXXX
put (OUTILEJTYPE, INCOUNTTOTAL.STMTJ4IJMS.DECTOTAL, width => 10);
new-line (OUTý_FILE_TYPE);

end PRJNLSTMTý_TYPE_3_IN;

procedure PRINT_-STMT_-TYPE3EX (REPORjTJYPE :in integer) is
begin

put (OtJT-.FILLEYPE, " 3 Declarations
if REPORT_-TYPE ý> 0 then
put (OUTJILETYPE- '2");

else
Put (OUL-FRELTYPE, FIND.PRIORTYF (STMT-TYPE'val (1)), width => 1).

end if;
put (OUT.JILEJ-YPE," XXXX 0");
newIine (OUT_FILETYPE);

end PRINTSTMTr_TYPE_3EX;

procedure PRINTsTMTTYPE_4_IN (INCOUNýTOTAL: in COUNT_TOTALS_TYPE;
REPORTTYPE :in integer) is

begin

197

Put (OUT-YILE...TYPE, " 4 Compiler Directives 1
if REPORTTYPE > 0 then
put (OUT-FILELTYPE, "3");

else
Put (OUT-FILE..YYPE, FUMDYRIORITY-F (STMTTYPE 'val (2)), width => 1);

end if,
put (OUTFJIE_.TYPE, " XXXX
Put (OUrJFILEJ'YPE, IN..COUNT-TOTAL.SIhffJJUMS.PRAGMAJTOTAL, width => 10),
newjfine (OUT-JILE...TYPE),

end PRINT-SMTMLYPE.AJN;

Procedure PRlNT-SThffJYPE.A..EX (REPORTJTYPE :in integer) is
begin

Put (OUT..FEULE.TYPE, " 4 Compiler Directives
if RBPORT-TYPE > 0 then

put (OUTJIRLETYPE, "3");
else

Put (OUT-ILEJ'YPE, FJNDYRIORITY..F (STMTTYPE'val (2)), width => 1);
end if,
put (OUTFULEYPE," 1 xxxx 0");
newJine (OUTYILEJYPE);

end PRNLTSTMLýTYPEA..EX;

procedure PRINTSTMTý_TYPE..5 is

begin

Putjine (OUT...FILEJYPE, " 5 Comments)

end PRINLSTMT..TYPEJ;

px'redure PRINTSTMTTYPE_6_IN (IN-COUNTTOTAL: in COUNTTOTALSTYPE;
REPORT-TYPE :in integer) is

begin

Put (OUyILEJF 1YPE, " 6 On their own lines
if REPORýTJYPE > 0 then

put (OUT.YI.E-TYPE, "4-);
else

Put (OUT-FIL-E-TYPE, FIND PRIORITYF (STM4TTYPE'val (3)), width => 1);
end if;
put (OUT-FILE .TYPE, ")XXXX

198

put (OUJTFILETYPE, INLCOUNT_ýTOTAL.STMTNUMS.CMTSONOWNTOTAL, width
=> 10);

newjline (OUTFILETYPE);

end PRINT_.STMT_TYPE_6_IN;

procedure PRMNLSTMTJ-YPE_6_EX (REPORTh-TYPE :in integer) is
begin

put (OUT FILEJTYPE, " 6 On their own lines 1
if REPORT-..TYPE > 0 then
put (OUTLFILETYPE, "4");

else
put (OUTLFILE-TYPE, FIND-PRIORITY-Y (STMTTYPE'val (3)), width => I)-,

end if;
put (OUT-FILE-TYPE," XXXX 0");
new-line (OUT-ILETYPE);

end PRINT-STMT_TYPE_6_EX;

procedure PRM LSTMITfYPEýJJN (IN_COUNT_-TOTAL: in COUNTJOTALSTYPE;
RLEPORLýTYPE :in integer) is

begin

put (OUTFELEJTYPE, " 7 On lines with source code IT;
if REPORTTYPE > 0 then
put (O)TJFILE-TYPE, "5");

else
Put (OUTJII.EJYPE, FND_-PRJORITY-J (STMTTYPE'val (4)), width => 1);

end if;
put (OUTFlILEJ'YPE, " IXXX
put (OUT-YILEJTYPE. JN-COUNT_-TOTAL.STMT_-NUMS.CMTSWSRCTOTAL, width

=> 10);
newline (OULýFILETYPE);

end PRINTSTMTTYPE_7IN;,

procedure PRINTSTMTTYPE_7_EX (RBPORLýTYPE :in integer) is
begin

Put (OUTFILETYPE, " 7 On lines with source code)

if REPORTTYPE > 0 then
put (OUTJRaETYPE, '15");

199

else
put (OUL-FILE..YPE, FID4DYRIORITY...F (SIThf_TYPE'val (4)), width => 1):

end if,
put (OUJTF..IJR-YPE," XXXX 0");
new-line (OMTFILEJYPE);

end PRINT-.STMTITPE_7..X;

procedure PRINTS7Týf-TYPE3JN (INCOUNTOTAL: in COUNLTOTALSJYPE;
REPORLýTYPE :in integer) is

begin

put (OUTJILE..TYP, " 8 Banners and nonbiank spacers)

if REPORT-TYPE > 0 then
put (OJTIL-FEJYE, "6");

else
put (OUT-FJLE-TYPE, FND,..PRIORrrY.F (STMTTYPE'val (5)), width => 1);

end if-,
put (OUT...FI.E._TYPE," XXXX 6)
put (OUT_-FILJýYPE, INCOUNT-TOTAL.STMT...NUMS.BANNERCMTS_TOTAL, width

=> 10);
newjine (OUTý_FILE_TYPE);.

end PRDNT.STMT_TYPE_8_IN;

Procedure PRRNTS1TMTTYPE_8_EX (REPORZTJYPE :in integer) is
begin

put (OUTJIL.EJ'YPE, " 8 Banners and nonbiank spacers)

if REPORTý_TYPE > 0 then
put (OUT .FIEJTYPE, "6");

else
put (OUTJ1LRE-YPE, FINDPRJOR1TYJ, (STMLýTYPE'val (5)), width => 1);

end if-,
put (OUTJ~FIL.EJYPE," xxxx 0");
newjine (OMUTFELE-TYPE);

end PRINT..STMTTYPE_8LEX;

procedure PRITTTMT...TYPELU.9N (INCOLINLTOTAL in COUNLTOTALS_TYPE:

200

REPORT_.TYPE :in integer) is
begin

put (OUT_-FILE..TYPE. " 9 Blan (empty) comments 1
if REPORT-TYPE > 0 then

put (OULFILEJYPE, "7-);
else

put (OuT-FILE-.TYPE, FmiND_ RORITYJ (STmTTYPE'val (6)), width => 1),
end if-,
put (OUT_FRETYPE, 1 XXXX
put (OuTJFILE-TYPE. JN.couNTJTOTAL.sTMLrýNumsEMrY.cmTs-ToTAL. width

-> 10);
new~lme (OUTYIL.E_TYPE);

end PRINTSTMT_TYPE_9_IN;

procedure PRINT...STMTTYPER_9_EX (REPORILTYPE in integer) is
begin

put (OUT.FILEJTYPE. " 9 Blan (empty) comments
if REPORT...TYPE > 0 then

put (OUTFILEJTYPE, I7";
else

put (OuT.YILE-TYPE, FIND_-PRionrTY.. (sTmTTYPE'val (6)), width => 1);
end if-,
put (OUT_FLLEYPE," XXXX 0");
new.-ine (OUT.YILE_-TYPE);

end PRINT-STMTTYPE3.ýEX;

procedure PRmNLSTMT!TYPE_10_IN (IN-.COUNT_-TOTAL: in COUNTr_TOTALS_TYPE;
REPORTTYPE :in integer) is

begin

Put (OUT-.FRELTYPE, "10 Blank lines 6)

if REPORTJTYPE > 0 then
put (OUTYR1E-TYPE, "8")

else
Put (OUT-F]LE-TYPIE, FWINYRIORITY-F (STMTI.TYPE'val (7)), width => 1);

end if;
put (OUTYILE-TYPE, " XXXX
Put (OUL-FULE..YPE, IN-COUNTTOTAL.STMT.ý-NUMS.BLANKLINESJTOTAL, width

=> 10);
new-Mie (OUTJIELETYPE);

201

end PRINTSTMTTYPE_10_IN;

procedure PRlNT..STMTTYPEJO0EX (REPORTJYPE :in integer) is
begin

put (OUT..YIL.E.TYPE, "10 Blank lines
if REPORT-TYPE > 0 then
put (OUTYIL.EJYPE, "8");

else
put (OUTYIL.E..YPE, FNID...PRIORITYJ.. (STMTý_TYPE'val (7)), width => 1);

end if-,
put (OULJ-FIILE...TYE, 4- XXXX 0");
new-fine (OUTJIaLE_TYPE);

end PRINT_STUfl'.TYPEOE3X;

procedure PRI14T_HOW_PRODUCED is
begin

new-line (OUTJILELTYPE);
puLhine (OUT.YILEJYPE, "How Produced");
new-line (OUTJ..ILETYPE);

end PRINTHOWPRODUCED;

procedure PRINL-HOW-PRODUCED_1_IN (R{COUNTTOTAL: in
COUNT_.TOTALSTYPE) is
begin

put (OUITYFILE-TYPE, "I Programmed XXXX
Put (OUTFILELTYPE, IN{COUNT_-TOTAL.PRODUCEDJJIJMS.PROGRAMNMDTOTAL,

width => 10);
new-fine (OUT FILEL.TYPE);

end PRINTJIO0WPRODUCEDl_1_Th

procedure PRINT..HOWPRODUCED_1_EX is
begin
put (OUTPRILETYPE, "I Programmed XXXX 0");
newjline (OUTFiMLETYPE);

end PRINTHOW-PRODUCEID_1X;

202

procedure PRINTý_HOW_PRODUCED_21IN (IN COUNT_TOTAL: in
COUJNTI_.TOTALSJTYPE) is
begin

put (OUIT_FILE_.TYPE, " 2 Generated with source code generators XXXX
put (OUTFILETYPE, IN _COUNTTOTAL.PRODUCEDý_NUMS.GENERATEDý_TOTAL,

width => 10);
new_line (OUT _FILETYPE);

end PRINTHOW..PRODUCED_2_IN,

procedure PRINT_-HOW_PRODUCED.2ZEX is
begin
put (OUT_-FILETYPE, " 2 Generated with source code generators XXXX 0");
new-line (OUT FILE TYPE);

end PRINTHOW-PRODUCED_2_EX;

procedure PRINT_-HOW_PRODUCED_3_jN (ThLCOUNTý_TOTAL: in
COUNT_-TOTALS_.TYPE) is

begin
put (OUTý_FILETYPE, " 3 Converted with automated translators XXXX
put (OUTý_FILE_TYPE. IN_COUNTTOTAL.PRODUCEDý_NUMS.CONVERTEDTOTAL,

width => 10);
newjline (OUTYILE_TYPE);

end PRINTHOWPRODUCED_3_IN;

procedure PRINLýHOW_PRODUCEDý_33..X is
begin
put (OUTFILETYPE, " 3 Converted with automated translators XXXX 0");
new-line (OUT...FIE TYPE);

end PRINTHOWPRODUCEDL3EX;

procedure PRNINTOW_PRODUCED..AJN (INtCOUNTTOTAL: in
COUNT_-TOTALSJTYPE) is

begin
Put (OUTFILETYPE, " 4 Copied or reused without change XXXX
put (OUT_-FILETYPE, INCOUNTý_TOTAL.PRODUCED_NUMS.COPIEDTOTAL, width

=> 10);
new-line (OUT _FIE_TYPE);

end PRINT_-HOWPRODUCED_4_1N;

203

procedure pRINTIOW_PRODUCEDý_4_EX is
begin

Put (OUT....ILEYPE, " 4 Copied or reused without change XXXX 0");
new-line (OUT FILE-TYE);

end PRINTyOWJ'RODUCED..A.EX;

procedure PRMNLHOW_PRODUCEDý_5_IN (IN COUNT..TOTAL: in
COUNLýTOTALS...YPE) is

begin
put (OUTYILE...TYPE, "15 Modified XXXX
Put (OUTFILEYPE, IN-COUNTTOTAL.PRODUCED..NUMS.MODEIEffDTOTAL,

width => 10);
new-line (OUT..YIEJYPE);

end PRITHO W..PRODUCEDLSJN;

procedure PRINT_-HOW_PRODUCrEDSEX is
begin

put (OUT_FIILE_TYPE,", 5 Modified XXXX 0");
new-line (OUTIILEJYPE);

end PRrINT_HOW_PRODUCED..5_.EX;

procedure PRINýjIOWPRODUCED_6_IN (ThJCOUNT-TOTAL : in
COUNT_-TOTALS_TYPE) is

begin
Put (OUTFILETYPE, " 6 Removed xxxx
put (OUTý_FILE _TYPE, IN-COUNTTOTAL.PRODUCEDYUbMS.REMOVEDTOTAL,

width => 10);
newjine (OUT FILE..TYPE);

end PRIT_..HOWjPRODUCEI....6j;

procedure PRINT_HOWPRODUCED_6_EXis
begin

Put (OUTJKILE.YPE, " 6 Removed XXXX 0");
new-line (OUT..YILELTYPE);

end PRINT-HOWPRODUCEDA.E3X;

204

procedure PRINT_ORGIN is
begin
new-line (OUT7ILETYPE);
putjmne (OULýFILE...TYPE, "Orgin");
new-line (OUTJIELETYPE);

end PRINTORG IN;

procedure PRINT_OR.GIN_l1_N (l]NCOUJNTOTTAL : in COUNTTOTALSJTYPE) is
begin

put (OUTFILETYPE, " 1 New Work: no prior existence XXXX
put (OUT_FILE_TYPE, INSCOUNTý_TOTAL.ORGIN_NUMS.NEWWORK_TOTAL, width

=> 10);
new-line (OUTYIFLETYPE);

end PRINT_ORGIN_1_WN

procedure PRINT_ORGIN_IEX is
begin

put (OUTý_FILETYPE, " I New Work: no prior existence XXXX");
put-line (OUT-YILE_TYPE " 0");

end PRINTLORGN_1_X;

procedure PRINT_ORGIN_2 is
begin
putjine (OUTJIFRLEYPE, " 2 Prior work: taken or adapted from")

end PRINTORGIN_2

procedure PRINLORGIN_3_IN (ThLCQUNTIJOTAL : in COUNTTOTALSJTYPE) is
begin

put (OLYLFIEJTYPE, " 3 A previous versic.,,, build, or release XXXX
put (OUTFILEffYPE,

IN COUNTTOTAL.ORGIN NUMS.PREVIOUSVERSIONTOTAL, width =.- 10);
new-line (OUTYILETYPE);

end PRINT...ORGWhC3JN;

procedure PRINLýORGN_3_EX is
begin

put (OUT_FILE_TYPE, " 3 A previous version, build, or release XXXX");
putjine (OUTYILE_-TYPE," 0)

205

end PRRT..ORGPIN3EX;

procedure PRINT_ORGIN_4_IN (INCOUNTJOTAL: in COUNTTOTALSJTYPE) is
begin
putjine (OUTFIE_TYPE, " 4 Commercial, off the shelf software");
put (OUT_FILE_TYPE. " COTS), other than libraries XXXX 1
put (OUTý_FIL-E_TYPE, IN_COUNTý_TOTAL.ORGINNUMS.COTSTOTAL, width => 10);
new-line (OUL-FELE-TYPE);

end PRZNT.ORGIN_4_N;

procedure PRINTORGIN_4_EXis
begin
putfitne (OUITJILE_TYPE, " 4 Commercial, off the shelf software");
put (OUTFILETYPE," COTS), other than libraries XXXX");
put~ine (OUTFHILE_TYPE " 0");

end PRINT _ORGIN_4_EX;

procedure PRINTORGIN_5_N (IN.COUNTTOTAL: in COUNTý_TOTALS .TYPE) is
begin
put-line (OUTJILETYPE. " 5 Government furnished software (GFS),");
put (OUTFILETYPE, " other than reuse libraries XXXX
put (OUTý_FILE_TYPE, IN_COUNTý_TOTAL.ORGIN_NUMS.GFS_TOTAL, width => 10);
new_line (OUT _FILE _TYPE);

end PRRNTjORGINS N;

procedure PRINTý_ORGIN_5_EX is
begin

put (OUTFILE_-TYPE, " 5 Government furnished software (GFS),");
put (OUTFELE...TYE, " other than reuse libraries XXXX").
putjline (OUT-YILETYPE "

end PRINT ORGIN_5_EX;

procedure PRINL-ORGN_6_IN (INCOUNTJTOTAL : in COUNT_.TOTALS_.YYE) is
begin

put (OUT_-FLEYYPE, " 6 Another product XXXX
put (OUT_FILE_TYPE,

INCOUNT_!TOTAL.ORGINNUMS.ANNOThERPRODUCTTOTAL, width => 10);
new-line (OUT.YFILELTYPE);

end PR~iNLORGIN6_IN;

206

procedure PRINTý_ORGIN4_6_EX is
begin

put (OUT..ILEJYPE, " 6 Another product XXXX");
putjine (OULýFILEJYE," 0");

end PRINTý_ORGIN...EX;

procedure PRINTORGIN_7_IN (IN.COUNTTOTAL: in COUNT_-TOTALS TYPE) is
begin
putjine (OUTIRETYPE, " 7 A vendor-supplied language support");
put (OUTFILE_.TYPE,'" library (unmodified) XXXX
put (OUTý_FILE_TYPE, IN COUTNT_TOTAL.ORGINNUMS.VSSPTLIB TOTAL, width =>

10);
new-line (OUT _FILE_-TYPE);

end PRINTORGIN_7_IN'

procedure PRINT_ORGIN_7_EX is
begin
put -line (OUT..YILE.,JYE, " 7 A vendor-supplied language support");
put (OUT..YILEJI'YPE, " library (unmodified) XXXX");
putjine, (OUTFILETYPE," 0");

end PRINTý_ORGIN-7EX;

procedure PRINT_ORGIN_-8_IN (INSOUNTTOTAL: in COUNTJOTALS&TYPE) is
begin
pu~line (OUTjILETYPE, " 8 A vedor-supplied operating system or");
put (OUT..YILE-TYPE, " utility (unmodified) XXXX
put (OUTý_FILEý_TYPE, INýCOUNTý_TOTAL.ORGIýN.J4MS.VS_SPTOS TOTAL, width =>

10);
new_line (OUT FILETYPE);

end PRINT_ORGIN_8_IN;

procedure PRINTORGN_8_EX is
begin
putjine (OUTJ.FIE_TYPE, " 8 A vedor-supplied operating system or");
put (OUTý_FILE_TYPE, " utility (unmodified) XXXX");
putjine (OUTFRLEJTYPE," 0");

end PRINT_ORGIN_8_EX;

procedure PRINT_ýORGIN_9_IN (IN..CQUNTJTOTAL: in CQUNTJOTALS-TYPE) is
begin

207

put-line (OUT-.YIETYPE, " 9 A local or modified language support");
Put (OUT-YILE-TYPE," library or operating system XXXX
put (OUTJILEJTYPE,

1N..COUNtýTJOTAL.ORGIN-NUMS.LOCAL_-SUPPLIED_-LIBJOTAL, width => 10);
newjine (OUTYILE,_.TYPE);

end PRINT'ORGIN-9JN;

procedure PRINTORGJN_9_EX is
begin
putjine (OUTYI-FLETYPE, " 9 A local or modified language support");
put (OUT-FILEJTYPE, " library or operating system XXXX");,
put -ine (OUTJILEý_TYPE," 0");

end PRINTý_ORGDhL9..EX;

Procedure PRINTORGIN_10.JN (INCOUNTTOTAL: in COUNTTOTALSTYPE) is
begin

put (OUTJILEJ:YPE, "10 Other commercial library XXXX
put (OUTY-FILETYPE, IN_-COUNT_-TOTAL.ORGIN_NUMS.COMMERCIAL_LIBTOTAL,

width => 10);
new - ie (OUTr_FIE_TYPE);

end PRINTORGWINJOJN;

Procedure PRINTORGIN_10_EX is
begin

put (OUTY1LETYPE,"10 Other commercial library XXXX");
putj1ine (QUT.._FILETYPE," 0");

end PRINLORGIN_10_EX;,

procedure PRINTORGINI UNW (ThCCOUNTJOTAL: in COUNTI_TOTALSJTYPE-) is
begin
put-line (OUTJIRLETYPE, "11 A reuse library (software designed");
Put (OUT...FELE...TE, " for reuse) XXXX
Put (OUT-ILEJTYPE, INCOUNTTOTAL.ORGINNUMS .REUSELIB_TOTAL, width =>

10);
newline (OUTMFIL_TYPE);

end PR]NLO0RGINj UNM;

procedure PRINT_ORGIN_11_X is
begin
putline (OUTYMEFLTYPE, "11I A reuse library (software designed");
put (OUT...F]ILE TYPE," for reuse) XXXX");

208

put-line (OUT.JFILE-TYPE," 0");
end PRINTORGIN_11_EX;

procedure PRPINT_ORGIN_12.JN (INS..OUNTTOTAL : in COUNTTOTALSJTYPE) is
begin

put (OUTJFIE_.TYPE, " 12 Other software component or library XXXX
put (OU'lFILEJYPE,

IN_COUNýTJOTAL.ORGINý_N'UMS.OTHEK.COMIPONENTý_TOTAL, width => 10);
new-line (OUTJILETYPE);

end PRINLORGINJý_2JN;

procedure PRINT_ORGIN_12_EX is
begin

put (OLJTILHE_.TYPE, "12 Other software component or library XXXX");
pu~line (OUT _FILE...TE," 0");

end PRINTý_ORGIN_12_EX;

procedure PRINTý_USAGE is
begin
new-line (OUT FILETYPE);
puLline (OUTjILHETYPE, "Usage");
new-line (OUTJILETYPE);

end PRWNLUSAGE;

procedure PRINLUSAGEJlIN (INýCOUNTJOMTAL : in COUNTý_TOTALSJTYPE) is
begin

put (OUTJL[IEJTYPE, " I In or as part of the primary product XXXX
put (OUTý_FILEJý_YPE,

IN-COUNTTOTAL.USAGE -NUMS.PRIMARYPRODUCT_-TOTAL, width => 10);
new~line (OUT _FILE,_TYPE);

end PRINTUSAGEJJIN;

procedure PRINTI_USAGE-l...X is
begin
put (OUTFILE-.TYPE, " 1 In or as part of the primary product XXXX 0");
new line (OUT _FIILE_TYPE);

end PRINTUSAGE1 1EX,

209

procedure PRINTUSAGE_2,.N (1N.COUNTTOTrAL: in COUNTJTOTALSJTYPE) is
begin

Put-line (OUTFILETYPE, " 2 External to or in support of the");
put (OUT..FIE-.TYPE, " Primary product XXXX
put (OUTJILE-TYPE. N_.COUNT_-TOTAL.USAGE-NUMSEXThRNALJOTAL, width =>

10);
newjline (OUT_-FIL.E_TYPE);

end PRINTUSAGE_2JN;

Procedure PRINTUSAGE....2.EX is
begin
putjine (OUT-.FILE-YPE, " 2 External to or in support of the");
put (OUT!ILE...TYPE, " primary product XXXX 0");
new-line (OUFJILE...TYPE);

end PRiNT USAGE_2,EX;

procedure PRWINDEVELOPNIENTSTATUS is
begin
new-line (OUTPIETYPE,);
putkjine (OUT-FILE-.TYPE, "Development Status");
new-ine (OUT_-FIJLETYPE);

end PRINT-DEVELOPMIENTSTATUS;

procedure PRINTJ)EVELOPMENT_STATUS_1_IN (IN_.COUNT_TOTAL : in
COUTNT-OTALSTYPE) is

begin
put (OUTFILEJTYPE,"1 1 Estimated or planned XXXX
Put (OUTFILE-YPE, IN...COUNT_-TOTAL.DEVELOPEDNUMS.ESTIMATED_TOTAL,

width => 10);
new mne (OUJT..YE _TYPE);

end PRINT _DEVELOPMENTý_STATUS 1JN;

procedure PRINLDEVELOPMENTSTATUS_IEX is
begin

put (OUT _FIL.EYPE, " I Estimated or planned XXXX");
putjine (OUT_-FILETYPE, " 0");

end PRINTJ)EVELOPMENTSTATUS l-EX;

Procedure PRJNT...DEVELOPMENTSTATUS_2_IN (ThCCOUNT-TOTAL : in
COUNT_-TOTALSJYPE) is

begin

210

put (OUTY-ILETYPE, " 2 Designed XXXX 1
put (OUTYILE..YYPE, INCOUNTJOTAL.DEVELOPEDNUMS.DESIGNED TOTAL,

width => 10);
newjline (OUTJ.FLEJTYPE);

end PRWINTDEVELOPMIENTSTATUS 2JN;

procedure PRINTDEVELOPMEENTSTATUS_2_EX is
begin

put (OUT-FILETYPE, " 2 Designed XXXX");
puL~line (OUT.YILETYPE, " 0");

end PRR]NLDEVELOPMIENTSTATUS_2_EX;

procedure PRINTDEVELOPMIENTSTATUS_3_N (TN1COUNTTOTAL: in
COUNTJTOTALS-TYPE) is

begin
put (OULFILEJTYPE, " 3 Coded XXXX
put (OUT _FILE_TYPE, I_COUNTTOTAL.DEVELOPEDNUTMS.CODEDTOTAL, width

new-line (OUTFILE_-TYPE);
end PRINTDEVELOPMENTSTATUS-3jN;

procedure PRINT.DEVELOPMIENTSTATUSý3_EX is
begin

put (OUTYIL.E..TYPE, " 3 Coded XXXX");
putjine (OUT-.YILETYPE, " 0");

end PRINTDEVELOPMENTSTATUS_3_EX;

procedure PRINTDEVELOPMIENT-STATUS_4_IN (INCOUNT-TOTAL : in
COUNT_-TOTALS-TYPE) is

begin
put (OUTFLLE_TYPE, " 4 Unit tests completed XXXX
put (OUT.._FILE_TYPE,

IK..COUNTJOTAL.DEVELOPEDNUMS.UNITTESTDONETOTAL, width => 10);
newjine (OUTFILETYPE);

end PRINTDEVELOPMEENTSTATUS4AN;

procedure PRINTDEVELOPNIENTSTATUS_4_E s
begin

put (OUTFILEYPE, " 4 Unit tests completed XXXX");
putjine (OUTJ..ILETYPE, " 0");

end PRINTDEVELOPMENTSTATUS 4EX;

211

procedure PRINT...DEVELOPMIENTSTATUS_SIN (INCOUNT _OTAL: in
COUNT..TOTALSJTYPE) is

begin
put (OL-UTJILTYPE, " 5 Integrated into components XXXX 6)

put (OUT..YILEJTYPE, 1N.COUNýTJOTAL-DEVELOPEDJ4NUMS.ITEGRATEDTOTAL,
width => 10);

new~line (OUTFILETYPE);
end PRINTDEVELOPMINTSTATUS_.531N;

procedure PRINTDEVELOPMENT_STATUS_5_EX is
begin

put (OU.TJFILE-TYPE. " 5 Integrated into components XXXX");
putline (OUTY-ILETYPE,"6 0");

end PRINT..DEVELOPMENTSTATUS_.53..X;

procedure PRINTDEVELOPMENTSTATUS_6_IN (IN...COUNTTOTAL: in
COUNTTOTALS.TYPE) is

begin
put (OUT_-FILE...TYPE, " 6 Test readiness review completed XXXX
put (OUT-YILE...TYPE,

IN-COUNTTOTAL.DEVELOPEDNUMS.TEST-READINESSREVIEWTOTAL, width =>
10);

newjime (OUTJFILEJTYPE);
end PRINTDEVELOPMENT..STATUS....6jN;

procedure PRINTDEVELOPMENTý_STATUS_6_EX is
begin
Put (OUTILEJ19-YPE,'" 6 Test readiness review completed XXXX");,
puLline (OULTfIL..ETYPE, " 0");

end PRINT--DEVELOPMENTSTATUS_ 6EX;

Procedure PRINTDEVELOPMENTSTATUS_7_IN (1N..COUNT_-TOTAL : in
COUNTTOTALSJTYPE) is

begin
put (OUTYFILE-TYPE, " 7 Software (CSCI) tests completed XXXX
put (OUT-FILEJTYPE,

IN -COUJNTTOTAL.DEVELOPEDNUMS.CSCICOMPLETED _OTAL, width => 10);
new-line (OUTFILE,_YPE);

end PRINT_-DEVIELOPMENTSTATUS_7_IN;,

212

Procedure PRWh4LDEVELOPM!ENTSTATUS_7_EX is
begin

Put (OUT-JU E-YPE, "7 Software (CSCl) tests completed XXXX")h
put~line (OUTLME..TYPE, " 0");

end PRTIDEVELOPMENT...STATUS-7EX;

procedure PRINT-DEVELOPMIENTSTATUS_8_IN (IN...COUNTTOTAL: in
COUNTJTOTALSTYPE) is

begin
Put (OUT-FRILEJYPE, " 8 System tests completed XXXX
Put (OUTr..YLE-TYPE, INCOUNTTOTAL.DEVELOPEDNUMS.SYSTEM_TEST_TOTAL,

width => 10);
new-line (OUTY-ILE_TYPE):

end PRINTDEVELOPMElNT3_TATUS_8_IN

procedure PRINTDEVELOPMENTSTATUS_ý8_EX is
begin

Put (OUT-YILE...TYPE, " 8 System tests completed XXXX");
put-line (OULýFILE_1YPE, 0");

end PRUNTDEVELOPMNENTSTATUS_,8EX;

procedure PRrINT_DATAARRAYF is
begin

-check for 3D arrays
if RECORD_-FLAGSF.PANEL3.DIEFý_DATAARRAY and

RECORDFLAGSF.PANEL4.DEFDATA_ARRAY and
RECORD.YFLAGSR.PANEL5.DEF..DAT&.ARRAY then

RETRlEVE-...2D.INTERFACE_3DMAT (REPORTF);
end if;
if RE-CORDFLAGS..Y.PANEL3.DEF_-DATAARRAY and

RECORDFLAGSF.PANEL4.DEF_-DATAARRAY and
RIECORDIFLAGSR.PANEL6.DEF_-DATAARRAY then

RETRVIEVE2ý2DJNTRFACEý3DMýAT (REPORTF);
ena if;,
if RECORDFLAGS-F.PANEL3.DEF_DATA_ARRAY and

RECORD-FLAGS-yJ'ANEL4.DEF_-DATA_ARRAY and
RECORDFLAGSF.PANEL9.DEF_-DATAARRAY then

RETRIEVE_8_D.ITMRFACE _3DýMAT (REPORTF);
end if;
if RECORDFLAGSJF.PANEL3.DEF_-DATAARRAY and

RECORD_-FLAGSF.PANEL6.DEFDATAARRAY and
RECORD_-FLAGSF.PANEL5.DEF_-DATAARRAY then

213

REWIEEVE_..2DIN MRACE_3DMAT (REPORT-F);
end if;
if RECORD..YLAGSF.JPANEL3.DEF_-DATA_-ARRAY and

RECORD-YLAGS&FPANEL9.DEFDATAARRAY and
RECORD-YLAGS-JPANEL5.DEFDATAARRAY then

RETREVE.A..2D.MNERFACE_3DMAT (REPORTJ)l;
end if-,
if RECORDJLAGSJYPANEL3.DEF.J)ATA-ARRAY and

RECORDLJLAGSF.PANEL6.DEFDATAARRAY and
RECORD.Y;LAGsJi.pANEL9.DEFýDATkAaRRAY then

RETRIEVES....2D.INTRFACEJ3DvAT (REPRTF);
end if;
if RECORD.YLAGSJyPANEL6.DEFýDATA&ARRAY and

RECORD-.FLAGS_...PANEL4.DEFý_DATAARRAY and
RECORD.YLAGSJ.PANELS.DEFDATA..ARRAY then

RETRIVEj_3D.MNERFACE.3D..MAT (MREPRJ);
end if,
if RECORDYFLAGSR.PANEL9.DEFý_DATAARRAY and

RECORD-YLAGSY.PANEL4.DEF_DATAARRAY and
RECORDFLAGSY.PANEL5.DEF..DATA-ARRAY then

REMEEVEJ..3D.INMRFACE.3Dý-MAT (REPORT-F);
end if,
if REcoRDJFLAGsY.PANEL6.DEF..DATA..ARRAY and

RECORDJFLAGS..F.pANEI4.DEFýDAT&ARRAY and
RECORD.YLAGSYPANEL9.DEFý_DATAARRAY then

REREEVE_2_3D.INTERFACE_3DMAT (REPRTJ);
end if,
if RECORDJFLAGSY.PANEL9.DEFJ)DAT&ARRAY and

RECORDJFLAGS_.RpANEL6.DEFý_DATAARRAY and
RECORD~jLAGS_F.PANEL5.DEF._DATAARRAY then

RETRIEVE_.4_3D.DUERFACEJ3D-MAT (REPORT-F);
end if-,

- check for 2D anmys
if RECORD...FLAGSY.PANEL3.DEF_-DATAARRAY and

RECORD.YLAGS_..PANEIA.DEFDATAARRAY then
RETRIEVE!_l2D.Th RFACE_2D...MAT (EOtRTJ);

end if,
if RECORDJLRAGSF.PANEL3.DEFDATAARRAY and

RECORD.FLAGSF.PANEL5.DEF_-DATAARRAY then
REMEVE3..2_INERFACE-.2DýMAT (REPORT...F)-;

end if-,
if RECORDJFLAGSy.YPANEL3.DEF_)ATA..ARRAY and

RECORD.YLAGSF.PANEL6.DEFý_DATAARRAY then
RETRIEVE_.2_-2D.2fTERFACE..2DLMAT (REPORT-F);

end if-,
if RECORDFLAGSJ.PANEL3.DEFDATA..ARRAY and

RECORDYLAGSF.PANEL9.DEFý_DATAARRAY then
REEVE-8..2D.PTERFACE.2DLMAT (REPORT _F);

end if-,
if RECORD _FLAGS_F.PANEL4.DEF _DATA ARRAY and

214

RECORDYFLAGS...F.PANEL5.DEFDATA_-ARRAY then
RETREVE....2D.INTERFACE__2Dý_MAT (REPORTY);

end if,
if RECORDJ-LAGS-YPANEL4.DEFDATAARRAY and

RECORDJ.LAGS-..PANEL6.DEF_-DATAARRAY then
RETRIEVE-.L2D.INERFACE_2DMAT (REPRTJ);

end if,
if RECORDJFLAGS-J.PANEIA.DEF_-DATAARRAY and

RECORD..YLAGS-..FJANEL9.DEF_-DATAARRAY then
RETRIEVEJQ..-2D.NTrERFACE..2DAAT (REPORTY);

end if-,
if RECORDFLAGSYJ'ANEL6.DEF..DATA.ARRAY and

RECORD_-FLAGS-FPANEL5.DEFDATA.ARRAY then
RETRIEVE 5_2D.NTERFACE_2DMAT (REPORT..Y);

end if;,
if RECORDFLAGSJF.PANEL5.DEF_-DATAARRAY and

RECORDý_FLAGS..F.PANEL9.DEFDATA_ARRAY then
RETRIEVE_6_2D.RNTERFACE_2DMAT (REPORT..F);

end if,
if RECORD..FLAGSY.PANEL9.DEFý_DATAARRAY and

RECORDFLAGSF.PANEL6.DEFDATAARRAY then
RETRMIEV..9_2D.INTERFACE -2D-MAT (REPORTJ);

end if;

end PRNTDATA.ARRAYF;

function COUNTý_STMTTYPE (S in STMTJTYPE;

Nq_COUNT_ARRAY :in COUINTARRAY_TYE) return integer is

TEMPCOUNT :integer := 0;

begin

for H in HOWPRODUCED'FIRST .. HOW..YRODUCED'LAST loop
for 0 in ORGIN'FIRST .. ORGIN'LAST loop
for U in USAGE'FIRST .. USAGE'LAST loop

for D in DE VELOPMENTI-STATUS 'FIRST.. DEVELOPMENTSTATUS 'LAST loop
TEMP COUNT= TEMP COUNT + INCOUNT _ARRAY (S, H, 0, U, D);

end loop;
end loop;

end loop;
end loop;

return TEMPCOUNT;

end COUNT..STM7LTYPE;

215

function COUNT-HOW-PRODUCED (H in HOW_PRODUCED;

INý_COUNT...ARRAY: in COUNT_ARRAYý_TYPE) return integer is

TENW..COUNT :integer := 0;

begin

for S in STMTJý_YPEFIRST.. STMT -TYPE'LAST loop
for 0 in ORGIN'FIRST .. ORGIN'LAST loop
for U in USAGE'FIRST. USAGE'LAST loop

for D in DEVELOPMENT...STATuS 'FIRST.. DEVELOPMENTSTATUS 'LAST loop
TEMP COUNT :- TEWP..COUNT + BUOCUNTARRAY (S. H, 0. U, D)-,

end loop;
end loop;

end loop;
end loop;

rem TEMPCOUNT-;

end COUNTHOWýPRODUCED;

function COUNTORGIN (0 :in ORGIN;

IN-.COUNT-ARRAY: in COUNT-ARRAYTYPE) return integer is

TEMPCOUNT :integer: 0;

begin

for S in STMT-TYPE'FIRST .. STMT_-TYPE'LAST loop
for H in HOW.J'RODUCED'FIRST.. HOWPRODUCED'LAST loop
for U in USAGE'FIRST .. USAGE'LAST loop

for D in DEVELOPMENTSTATUS'FIRST .. DEVELOPMENT_-STATUS 'LAST loop
TEMP..COUNT :- TEMP-.COUNT + 1N.OUNT-ARRAY (S, H, 0, U, D);

end loop;
end loop;,

end loop;
end loop;

retum TEMP-COUNT;

end COUNT,.ORGIN;,

function COUNT-USAGE (U in USAGE;
NCOUNTARRAY: in COUNTARRAY-TYPE) return integer is

TEMPý..COUNT :integer := 0:

216

begin

for S in STMTJfYPETFIRST .. STMT -TYPE'LAST loop
for H in HOW..PRODUCED'FIRST.. HOWV_PRODUCED'LAST loop
for 0 in ORGNTI4FRST. ORGIN'LAST loop

for D in DEVELOPMENTý_STATUS'FIRST. DEVELOPMENTSTATUST'AST loop
TEMPCOUNT: TEMPCOUNT + INCOUNT-.ARRAY (S, H. 0. U. D);

end Ioop;
end loop,

end loop;
end loop;

return TEMPýCOUNT;

end COUNTý_USAGE;

function COUINTPEVELOPMENTSTATUJS (D in DEVELOPMENTSTATUJS;

THLCOUNT_-ARRAY :in COUNTý_ARRAYJTYPE) return integer is

TEMP..COUNT :integer :=0;

begin

for S in STMTý_TYPE'FIRST.. STMT_-TYPE'LAST loop
for H in HOW-PRODUCED'FIRST .. HOWPRODUCED'LAST loop
for 0 in ORGIN'FIRST .. ORGIN'LAST loop

for U in USAGE'FIRST. USAGETAST loop
TEMPý_COUNT: TIENMP_COUTNT + IN_COUNTý_ARRAY (S, H, 0, U, D);

end loop;
end loop;,

end loop;
end loop;

return TEMPCOUNT;

end COUTNTDEVELOPNMENTSTATUS;

procedure COUNT-.ATTRIBUTEONE (ThLRkECORD_FLAGS :in FLAGS;
INOUNT TOTALS: in out COUNTTOTALS TYPE;
INARRAY in COUNTý_ARRAY TYPE) is

begin

if INRECORDFLAGS.PANEL3.Iinel1 then
INCOUNT_-TOTALS.ShIT_ýNUMS.EXECJ-OTAL: COUTNTSTMTTYPE

(STMT_-TYPE'val (0), IN-ARRAY);
end if;,
if INRECORDFLAGS.PANEL3.line_3 then

217

Ut-COUNTJOT(ALS.STMTYUMS.DEC_TOTAL: COUNT_..SThffTYPE
(STh%(tjYE'vaI (1), IN-ARRAY);

end if-,
if IN-RECORILFLAGS.PANEL3JinC_4 then

INCOUNTTOTALS.SITh4TNUMS.PRAGMAJ-OTAL: COUNTSTMTTYPE
(STMf..TYPE'val (2),]NJIRRAY);

en~dif.
if IN-RECORtULAGS.PANEL3.Iine_6 then

1N..COUJNITJOTAIS.SITýNrNUMS.CMTSONLOWNJTOTAL:
COUNT..STMTMYE (STMT TYPE'val (3), INARRAY);.

end if-,
if INRECORD..YLAGS.PANEL3.Iine_3 then

IN...COUN7ýTJOTALS.STMýNTNU .CMTS-WSRC_-TOTAL:
COUNT-.STMLT.YPE (STMTTYPE'val (4), IN..ARRAY);

end if-,
if INRECORD...LAGS.PANEL3.line_-8 then
ThLCOUNT-TOTALS.STMT...NUMS.BANNERCMTfSTOTAL:

COUNTSTMTTYPE (STMT_-TYPE'val (5), IN-ARRAY);
end if;,
if INRECORDYFLAGS.PANEL3.Iine_9 then

IN_-COUNTTOTALS.STMTYUMSEMPTY..CMTSJTOTAL:
COUNT_-STMTTYPE (STMTTYPE'val (6), IN-ARRAY);

end if;,
if IN-RECORD_-FLAGS.PANEL3.linejO1 then

IN..COUJNLTO-TALS.STMTNUMS.BLANK.LINESTOTAL:
COUNL-STML-TYPE (STMTTYPE'val (7), INICARRAY);

end if-,

end COUNT_-ATrRIBUTEOQNE;

procedure COUNT...ATTRBUWTEWO (INRECORDL.FLAGS in FLAGS;
INCOUNT_-TOTALS: in out COUNTý_TOTALS_TYE;
INARRAY in COUJNT-ARRAYTYPE) is

begin

if N_4RECORDFLAGS.PANEL4.I.ine-1 then
ThCCOUNýTJOTALS.PRODUCEDNUTMS.PROGRAMMDDTOTAL:

COUNT .HOWPRODUCED (HOW -PRODUCED'val (0), INLARRAY);
endif,
if INRECORDFLAGS.PANEL4.line_2 then

INCOUNT-TOTALS.PRODUCED NUMS.GENERATED TOTAL:
COUNT 10 W-PRODUCED (HO WjRODUCED'val (1), INARRAY);

endif;
if IN-RECORDL LAGS.PANEI4.line_3 then

ThL-COUNL-TOTALS.PRODUCED_NUIMS.CONVERTEDJTOTAL:
COUNT-HOW-PRODUCED (HOWLPRODUCED'val (2), II'-ARRAY);,

end if;
if IN..RECORDJLAGS.PANEL4.A.ine-4 then

Di-..COUNL-TOTALS.PRODUCEDNUMS.COPEEDý_TOTAL:

218

COUNTHOWPRODUCED (HOWPRODUCED'val (3), LNtARRAY);
end if-,
if IECORDFLAGS.PANEL4.line_.5 then

INCOUNLýTOTALS.PRODUCED_-NUMS.MODLFIDTOTAL:
COUNT-HOW-PRODUCED (HOW-PRODUCED'val (4), INARRAY);

end if.
if IN_RECORDFLAGS.PANEL4.line_6 then

N_ýCOUNTTOTALS.PRODUCED_-NUMS.REMOVED_-TOTAL:
COUNTHOWPRODUCED (HOVWPRODUCED' val (5), INARRAY);

end if;,

end COUNT-AlTRIBUTE_TWO;

procedure COUNILA MIBUEJTHREE (INRECORI)JFLAGS: in FLAGS;
INCOUNTTOTALS: in out COUNTTOTALSJTYPE;
IN-ARRAY in COUNTARRAYTYPE) is

begin

if INRECORDFLAGS.PANEL5.Iine_1 then
N_-COUNTTOTALS.ORGUýNLMS.NEWWORKTOTAL: COUNTORGIN

(ORGIN'val (0), I1'ARRAY);
end if;,
if INRECORDFLAGS.PANEL5.line_3 then
ThLCOUNTTOTALS.ORGINNUMS.PREVIOUSVERSIONJTOTAL:

COUNTLORGIN (ORGIN'val (1), INARRAY);
end if;
if NRECORDFLAGS.PANEL5.line_4 then

N_.COUNT_-TOTALS.ORGIýNNUMS.COTSTOTAL: COUNTORGIN (ORGIN'val (2),
Ný_ARRAY);

end if;
if INRECORDFLAGS.PANEL5.Ime_-5 then

INCOUNT_-TOTALS.ORGI-NLJMS.GFSTOTAL: COUNTORGIN (ORGIN'val (3).
INARRAY);

end if;
if RN_RECORDFLAGS.PANEL5.hine_6 then

NCOUNTTOTALS.ORGINJUMS.ANNOTHERPRODUCTý_TOTAL:
COUNL-ORGIN (ORGIN'val (4), ThCARRAY);

end if;
if INRECORDFLAGS.PANEL5.line_3 then

IN,.COUJN7_TOTALS.ORGIN4ýNUMS.VS..SPT..LIBTOTAL: COUNTORGIN
(ORGIN'val (5), NhLARRAY);

end if;
if INRECORDFLAGS.PANEL5.Iine_8 then

NLCOUNTTOTALS.ORGIý_N S.VS_.SPIýOSTOTAL: COUNT_ORGIN
(ORGIN'val (6), INARRAY);

end if;
if INRECORDFLAGS.PANEL5.Iine_9 then

IN..COUNT_-TOTALS.ORGINNUMS.LOCAL..SUPPLIEDLIBTOTAL:
COUNT ORGIN (ORGIN'val (7), INARRAY);

219

if IN_.RECORPFLAGS.PANEL5.line_10 then
INCOUNT...TOTALS.ORGINNMS.COMMERCIAL_-LIBTOTAL:

COUNTORGIN (ORGIN'val (8), INARRAY);
end if"
if IN_RECORDFLAGS.PANEL5.line-lIi then

INCOUNT_TOTALS.ORGIN-NUMS.REUSELIBTOTAL: COUNT_ORGIN
(ORGIN'val (9), INARRAY);

end if;
if IN RECORDL LAGS .PANEL5.line_12 then

INCOUNTý_TOTALS.ORGIqNNUMS.OTHERCOM[PONENTJOTAL:
COUNT..ORGIN (ORGIN'val (10), IN..ARRAY);

end if;

end COUNTATRIMBUlETEIRE;

procedure COUNTATrRUIBTE.YOTR (IN_RECORDFLAGS: in FLAGS;
INý_COUNTJOTALS: in out COUNTTOTALSTYPE;
INARRAY in COUNT_.ARRAY...YPE) is

begin

if IN_RECORDL.FLAGS.PANEL6.line_l then
IN._COUNTý_TOTALS.USAGE_NUMS.PRIMARYJ'PRODUCTTOTAL:

COUNT-US AGE (USAGE'val (0), IN..ARRAY);
end if;
if IN..RECORD-YLAGS.PANEL6.line_2 then

ThLCOUINTJOTALS.USAGE_-NUMS.EXTERNALTOTAL: COUNTUSAGE

end if;,

end COUNTATIRIBUTE_FOUR;

proceduire COUNTLATMR1BUTEFIVE (INRECORDFLAGS in FLAGS;
IýN_COUNTTOTALS: in out COUNTTOTALSJTYPE;
IN_ARRAY in COUNTý_ARRAYTYPE) is

begin

if INRECORDFLAGS.PANEL9.lmne_1 then
IN_COUNTTOTALS.DEVELOPEDNUMS.ESTIMATEDTOTAL:

COUNT-PEVELOPMENTSTATUS (DEVELOPMIENTSTATUS'val (0),
INARRAY);,

end if;,
if IN RECORDFLAGS.PANEL9.Iine_2 then

INCOUNTJ-OTALS.DEVELOPEDNUMS.DESIGNE-DTOTAL:
COUNTPEVELOPMENT3-TATUS (DEVELOPMENTý_STATUS 'val (1),

INARRAY);

220

end if,
if IN...RECORD_.fLAGS.PANEL9.Iine_3 then

1Nj.COUNTJOTALS.DEVELOPEDý_NUMS.CODEDJTOTAL:
COUNTDEVELOPM[ENTSTATUS (DEVELOPMENT_STATUS'val (2),

INýARRAY);
end if-,
if IN_RECORDFLAGS.PANEL9.line_4 then

IN.COUNTJTOTALS.DEVELOPED_-NU`MS.UNITTEST_DONEJTOTAL:
COUNTDEVELOPMENTý_STATUS (DEVELOPMENT_STATv JS'va1 (3),

INCARRAY);
end if-,
if INRECORD.FLAGS.PANEL9.line_5 then
INLCOUTJOTALS.DEVELOPEDNUMS.INTEGRATEDTOTAL:

COUNT_-DEVELOPMENTSTATUS (DEVELOPM[ENTSTATUS'val (4),
IN-ARRAY);

end if;
if 1N_.RECORDFLAGS.PANEL9.Iine,_6 then

INCOUNTý_TOTALS.DEVELOPED_-NUMS.TESTREADINESSREVIEWTOTAL:
COUNTDEVELOPMENT_STATUS (DEVELOPMENT_STATUS'val (5),

IN_ARRAY);
end if;
if INRECORD_FLAGS.PANEL9.lmne_7 then

INý_COUNT_-TOTALS.DEVELOPED_-NUMS.CSCI_-COMPLETEDTOTAL:
CO'UNTDEVELOPMENTSTATUS (DEVELOPM[ENTSTATUS'val ()

IN...ARRAY);
end if;,
if INRECORDFLAGS.PANEL9.line_8 then
INCOUNT_-TOTALS.DEVELOPEDNU"MS.SYSTEMTESTTOTAL:

COUNTDEVELOPM[ENTSTATUS (DEVELOPMENTSTATUS'val (7),
IN_ARRAY);

end if;

end COUN'T_AlTRIBUTE_FIVE;

procedure REPORTLA (COUNTI_TOTALSA : in out COUNTTOTALSTYPE) is

REPORTj_AFLAG integer: 1;
ESTIMATED- TOTAL :DEVELOPMENTSTATUS: DEVELOPMENTSTATUS'val(O),

begin

new-line (OUT_FILE_TYPE, 2);
putjline (OUT-YILETYPE, " REPORT A");

PRINTREPORTHEADER1;

new-line (OUTYRLETYPE);
put (OUT..FILETYPE "' Counted:")

221

put (OUT7.FILEJ:1YPE, COUNT_-TOTAL..LINE&-A (COUNTTOTALSA)):
new-line (OUTLFILE5YPE);
put (OUTF...FETYPE, " Estimated:)

put (OUTJIELEJTYPE, CNTEST (ESTIMATEDJTOTAL, COUNTý_ARRAY-A));

new-line (OUTFILETYPE);
PRITREPORT_.HEADER-2;

PRRCTSTM7THEADER;
PRINTSTMT_.TYPE_1_IN (COUNTTOTALSA, REPORT..AYLAG);
PRIT...TMTJ-YPE.2;
PRINTSTMLýTYPE..3..JN (COUNTJTOTALS.A, REPORT...A.JLAG);
PRINLSTMT...YPEA.JN (COUNTJTOTALS..A. REPORT-A.FLAG);
PRMINTSTM-TJYPES5;
PRINT..STMTý_TYPE_6EX (RPORTAFLAG);
PRINTSTMTTYPE_7_X (RPORT_-AfLAG);
PRINTSTMTý_TYPE_8_EX (REPORTý_A_IFLAG);
PRINT_STMT_TYPEý_9_EX (REPORTj_AFLAG);
PRINTSTMTTYPE_10_EX (REPORTAFLAG);

PRINT'_HOW_PRODUCED;
PRINTHOW_-PRODUCEDJJN (COUNTTOTALS.A);
PRINT_7HOWPRODUCED 2N (COUNTTOTALS-A);
PRMNLHOW-PRODUCEDL3JN (COUNT-TOTALS.A);
PRINTHOWPRODUCEDA4.I]N (COUNT-jOTAL&-A);
PRINT_-HOWPRODUCEDJ-N (COUNTTOTALS-A);
PR qjHO W_.PRODUCEQIfr..EX;

PRINTORGIN;
PRINTORGIIhU-JN (COUNT_-TOTALS.A);,
PRRCN-ORGINL2;
PRINTORGLN3JN (COUNT_-TOTALS..A);
PRMNLORGNLU4N (COUNTTOTALS.A);
PRINTORGI~hL5JN (COUNTTOTALS.A);
PRINT_.ORGIN..6JN (COUNT_-TOTALS...A);
PRInTORGIN37EX;
PRINTORGINA..X;
PRINTORGLN-9JN (COUNTTOTALS,..A);
PRR4NLORGINj0OJN (COUNT_-TOTALS.A);
PRINTORGINj1-JN (COUNT...TOTALS.A);
PRMNLORGINj2JIN (COUNT_TOTALS..A);

-PRINT..REPORTIý-EADER-2;

PRRINTUSAGE;
PRINTUSAGEJJ-N (COUNTTOTALS-A);
PRINTUSAGE..Z.EX;

PRINT-DEVELOPMENTSTATUS;
PRINT_ýDEVELOPMENTSTATUSIEX;
PRINTDEVELOPMfENT_-STATUS_2_EX;

222

PRINT -DEVELOPMENTSTATUS_3_EX;
PRINT-DEVELOPMIENTSTATUS_4_EX;
PRINT ýDEVELOPMENTSTATUS_5_EX;
PRINT ýDEVELOPMIENTý_STATUS_6i_EX;
PRINT _DEVELOPMIENT-STATUS_7_EX;
PRINTDEVELOPMENT-STATUS_8_IN (COUNTTOTALSA);

end REPORT.A;

procedure REPORT...B (COUNT_TOTALSB in COUNT_TOTALSTYPE) is

REPORTB_ -FLAG integer: 1;
ESTIMATED-TOTAL : DEVELOPMENTSTATUS: DEVELOPMENTSTATUS'val(O);

begin

new..page (OUTý_FILETYPE);

newjine (OUT _FILETYPE, 2);
putline (OUT.JILETYPE. " REPORT B");
newjine (OUTJJLETYPE);
PRINTREPORTý_HEADER-l;

newjine (OUT _FILETYPE);
put (OUTFILEJIYPE, " Counted:)
put (OUT.FILEJTYPE, COUNTTOTAL._LINESB (COUNýTJOTALSLB));
new-line (OUTJIFLETYPE);
put (OUTFILETYPE. " Estimated:)
put (OUTFILETYPE, CNLEST (ESTIMATEDý_TOTAL. COUNTARRAYB));
new-line (OUT-FILETYPE);

PRINTREPORTHBEADER.2;

PRINTSTMTHEADER;
PRINTSTMT_-TYPE_1_IN (COUNT-TOTALSB, REPORBFLAG);
PRINTSTMTr_TYPE-2;
PRINTSTMf-TYPE_3_IN (COUNTJ.OTALSB, REPORTB~jLAG);
PRINTSTMT_TYPE_4_N (COUNL-TOTALSB, REPORBFLAG);
PRINTý_STMT_TYPE.5;
PRINT -STMT _TYPE_6ý_EX (REPORT,..BKAG);
PRINT STMT -TYPE_7_EX (RBPORTI_.B FLAG);
PRlNT..STMTýTYPE_8...X (REPORTBFLAG);
PRINTSTMT_-TYPE_9_EX (REPORTILBJLAG);
PRINTSTMT_-TYPE_10_EX (REPORTB_FLAG);

PRINT_HOW_PRODUCED;
PRINT'_HOW_PRODUCEDj~jN (COUJNT_TOTALSB);
PRINTHOWPRODUCED-2 N (COUNT_-TOTALS-B);

223

PR]NT.,HOW-PRODUCED..3JN (COUNTJTOTALS3.);
PRINT-HOW-PRODUCED-4-N (COUNTTOTALS .B);
PRlNT-HOWjP.ODUCED-5-N (COUNTTOTALSB);
PRNTHOWYPRODUCED6-JN (COUNT TOTALSB).

PRINTORGIN;
PR1NT..ORGINL1.1N (COUNTJTOTALSB);
PRINTr.ORGhlN2;
PRINT-ORGIN3JN (COUN*_TJOTALSB);
PRMN-.ORGINAJIN (COUNTTOTALSB0);
PRlNTO0RGhl5jJN (COUNTTOTALSB);
PRD4T...ORGhlN6-JN (COUNTTOTALSB);
PRINTO-RGIN_7_EX;
PRINT-.ORGIN.&-EX;

RIT..ORGIN9J-N (COUNTJ-OTALSB);
PRINT.ORGIN-IOJ-N (COUNTTOTALS-B);
PRINORGINJ I-N (COUNTTOTALS...B);
PRInT_0RGlN_12lN (COUNT_TOTALS3..);

-- PRINTREPORTJIEADE&2;

PRINT-USAGE;
PRINT USAGEJJl-N (COUNTTOTALS3..);
PRJNTJJUSAGE_2_EX;

PRIT_.DEVELOPMINT.._STATUS;
PRINT DEVELOP STATUSJLEX;
PR~rýDEVELOPMEfNTSTATUS_2_EX;
PRINT-DEVELOPMENTSTATUS_3-N (COUNT-TOTALS-B);
PRD4T,..DEVELOPMfENT.STATUS_4_N (COUNTý_TOTALS B);
PRINTJ)DEVELOPMENTSTATUSJ_51 (COUNT-TOTALS B);
PRINT _DEVELOPMdENT_STATUS~f_6N (COUNTJOTALS-B);
PRINTDEVELOPMNTR71_STATUS_72N (COUNT_-TOTALS B);
PRINTDEVELOPMENTSTATUS_8N (COUNT_ýTOTALSB);

-- Using generic package to print out two dimensional array
-- of Developmen(_status and How-.produced

RETRIEVEJO10_2D. ThRFACE_2DMAT (REPORT B);

end REPORTB;

procedure REPORTC (COUNTJTOTALSSC: in COUNTTOTALSTYPE) is

REPORT_CFLAG integer: 1;
ESTIMATEDTOTAL :DEVELOPMUENT...STATUS: DEVELOPMENT_ýSTATUS'val(O);

begin

new-.page (OUTFILETYPE);

224

new-line (OUTFILETYPE, 2);,
putline (OUT-FILETYPE, " REPORT C");
new-line (OUTFIETYPE);
PRINTREPORTHEADER_1;

new-line (OUT_FILETYPE);
put (OUT!ILEYPE, " Counted:)
put (OUTPIL&TYPE, COUNTTOTALLNESC (COUNTTOTALSC)):
new-line (OUTFILETYPE);
put (OUT-JILEJTYPE, " Estimated:)
put (OUT..YILEJYPE, CNT3..ST (ESTIMATEDTOTAL, COUNL-ARRAY-C));
newjine (OUTFILETYPE);
PRINT-REPORT..JIEADE&.2;

PRINT'_STMT_HEADER;
PRINTSTMTTYPE_1_IN (COUNTJTOTALSC, REPORT-C-JLAG);
PRINTSTMTTYPE-2;
PRINTSTMTý_TYPE_3_IN (COUNLýTOTALSC, REPORT...C..LAG);
PRINTSTMTTYPE_4_IN (COUNT-TOTALSC, REPORTS-C.LAG);
PRINTSTMT_TYPE...5;
PRJT-STML-TYPE_6_-IN (COUNT!-OTALSC, RBPORT-C.FLAG);
PRU4T_-STMTTYPE_7_IN (COUNTTOTALSC, RBPORTCJLAG);
PRIN4TSTIT-TYPE_8..EX (REPORTSCYLAG);
PRE41LSTML-TYPE_9_X (REPORTSCJLAG);
PRINTSTMT_-TYPE_10_EX (REPORTCFLAG);

PRINT_HOWPRODUCED;
PRINT_HOWPRODUCEDJ -IN (COUNTTOTALSS..);
PRINT_HOWPRODUCED 2-IN (COUNTTOTALSC);
PRINT_-HOWPRODUCED..3JN (COUNLTOTALSC);
PRINT_-HOWPRODUCEDA IlN (COUNTTOTALSC);
PRINTHOWPRODUCED-5_IN (COUNTJOTALSC);
PRINT_HOWPRODUCEDA..IN (COUNTOTALSC);

PRINTORGIN;
PRINTORGlINjJ-N (COUNTJOTALS...);
PRINTORGIN_2
PRINTORGINJ..JNR (CIOUNTTOTALSS..);
PRDINTORGWINAJN (COUNTTOTALSS.);
PRINTORGUhL5JN (COUNTTOTALSS..);
PRINT_-ORGDhL6JN (COUNT'I7OTALS C);
PRINTl_ORGIN.LEX;
PRINTORGIN.$...X;
PRbINTORGIN9jN (COUNTTOTALS C);
PRINTORGINJOJIN (COUNT-TOTALS..C);
PRINJTORGINJL1IN (COUNT-TOTALS...C);
PRINTORGIN 123N (COUNTTOTALS.C);

-- PRINTREPORL-HEADER_2;

225

P¶UNTJJSAGE;
PRINT-JSAGEJJIN (COUNT-OTALS..C);
PRIILUSAGE-A-.EX;,

PRNINTDEVELOPMENT..STATUS;
PT...-DEVELOPMENT...TATUSJ...EX;
PRBNT..DEVELOPMENT...STATUS-2_EX;
PT ýDEVELOPMET-STATUJSEX;
PRJNT-DEVELOPMIENTLSTATUSA...EX;
PRINT.DEVELOPMENTSTATUS_5EX;
PRDMT..DEVELOPMIENT-STATUS.fi EX;
PRINT.DEVELOPMENT..STATUS-7-EX;
PRfINT DEVELOPMENT_.STATUS.8JN (COUNTTOTALS-C);

-Using generic package to print out two dimensional array
-- of Statementjtype and How..produced

RETRIEVE-_2D.INTRFACE_2D)_MAT (REPORT C);

end REPORTSC;

procedure REPORT-) (COUNTTOTALS..D: in COUNTTOTALSJYPE) is

REPORT_-DLAG integer: 1;
ESTIMATEDTOTAL :DEVELOPMENTSTATIJS: DEVELOPMEfNT_-STATUJS'val(O);

begin

new-M~ae (OUTJ-ILE-TYPE);

new-line (OUTJYIE...TYPE, 2);,
putjine (OUT_ýFILE_TYPE, " REPORT D");
newJine (OUT_ýFIL.E_TYPE);
PRINT-REP0RT...HEADERJ;

new~jine (OUTFILE,_TYPE);
Put (OW-UT..IL.TYPE, " Counted:)
Put (OUTYFILE-JYPE, COUNT_TOTAL LIqES-D (COUNTTOTALSI)));
new-line (OUTFILETYPE);
Put (OUL-FIL.X-YPE, " Estimated: I);
put (OUT-FILEJTYPE, CNTEST (ESIlMATEIDTOTAL, COUNT...ARRAyD));

newjine (OUTFILETYPE);
PRINT ýREPORTHEADER.2;

PRINT .STMT _HEADER;
PRMNLSTMT_.TYPE_1_IN (COUNTJ.OTALSJ), REPORTDFLAG);
PRINLSTMT-TYPE-2;
PRNT-STmTTYPE_3_IN (COUNTTOTALSD, REPORTDFLAG);
PRInT-STMTTYPE_-4_IN (COUNTý_TOTALSD, REPORTDFLAG);

226

PRINT..STM-T.YPE..5;
PRINT_STMTý_TYPE_6_EX (REPORTJ)JLKAG);
PRINT STMT TYPE_7_EX (REPRT -D.YAG);
PRINTSTMTYPEJ..X-(REPORTDLAG);
PRNINT.STMTJYPEý_9ý_EX (REPORT_..DLAG);
PRNTSTM-T.YPE_10_EX (REORT-D-JLAG);

PPRINT.HOWPRODUCED;
PRINT_HOWPRODUCEDJJNW (COUNT-TOTALS-D);
PRIN HO W-.RODUCED,...2N (COUNT JOTALS....);
PRINTHOWPRODUCED,.3JN (COUNTTOTALS 3));
PRINT-HOWY-RODUCEDJUIN (COUNTJOTALS-.D);,
PRINTHOWPRODUCEDL5JN (COUNTTOTALS-D);
PRINT.HOWPRODUCED..63N (COUNTTOTALS-D);

PRINT3)ORGIN;
PRINT-ORGINj-N (COUNT-TOTALS-P..D)
PRINT-ORGWN..2;
PRNTORGIN3JIN (COUNT_-TOTALS-..,D)
PRINLORGIN-A-JN (COUNTTOTALSJP));
PRINT...ORG~hLj-N (COUNTTOTALSDP);
PRINTORGIN-6-N (COUNT_-TOTALS...D);
PRINT -ORGIt7-EX;
PRn-ORGWN8.EX;
PRINT-,ORGNhL9JN (COUNT_.TOTALS-D);
PRJNTL.ORGINJ0-N (COUNT-TOTAL&DP);
PRINT._ORG~qIIN U(COUTNT_3OTALS-D);
PRNT...ORGW-U2...J (COUNTJ-OTALS-D)*;

-PRINTREPRTHEADER2;

PRRINTUSAGE;
PRINTJJSAGEJJNX (COUNýTJOTALS-P...
PRInTUSAGE_23.X;

PRINT DEVELOPMENTSTATUS;
PRINT3)DEVELOPMElNT_STATUS_l..X
PRNT3)EVELOPMENT-STATUS_2_EX;
PRINLýDEVELOPMElNT_-STATUS_3_Ex;
PRINT3)DEVELOPMEENT_-STATUS_4-.EX;
PRNT..DEVELOPMENSTATUS-5_EX;
PRINT3)DEVELOPENTIýSTATUS_6..EX;
PRINT-DEVELOPENTSTATUS_7_EX-
PRINTDEVELOPMENTSTATUS-8IN (COUNTTOTALS-D);

-- Using generic package to print out two dimensional array
-- of Orgin and How-.produced

RETRIEVE32.M.TERFACE_2DMAT (REPORLýD);

end REPORTD;

227

procedure REPORT.... (COUNTTOTAL&E : in CONL~rTOTALSJTYPE) is

REPORT_9EFLAG integer:- 1;

ESTIMATEDJOTAL :DEVELOPM(ENTý_STATUS := DEVELOPMENT_STATUS'val(O);

new-Mpee (OUTFJILE-TYPE);

newjine (OUTF.YILEJTYPE, 2);
putjine (OLtnrJLE..YYPE, " REPORT E");,
new-line (OUr.YILE..YYPE);
PRINTREPORTJ{EADER-1;
neWjine (OUT.JILEJTYPE);
put (OLT.YILE..YYPE. " Counted:)
put (OUJTFLEJYPE, COUNLTOTAL,_LINESE (COUNTTOTALS_ýE));
new-line (OUTYlLETYPE);
put (OLTJiLFE_.TYPE, "Estimated:)
put (OUTYILEJ,_YPE, CNTEST (ESTIMATED..TOTAL, COUNT.ARY-E));
newjine (OUT-FILE-TYPE);
PRlNT-.REPORTJIEADER..2;
PRINTSTMLHEADER;
PR1NT-STMTTYPEJJN (COUNTTOTALS..E, REPORTEYJLAG);
PRINT-STMT .TYPE_2;
PRINSTMsTJ-yPE_3_N (COUN'TJ-OTALSE. REPORT-9-.FLAG);
PRrqT..sTmT..TYPEL4JN (CoUNLTOTALSE, REPOR¶LE.YFLAG);
PRlThflSTMýTjYPE,5;
PRINT_STMT_TYPE_6_TN (COUNTJfOTALS...E, REPORTEFLAG);
pRINTSTMTTypE_7_IN (COUNT.JTOTALS...E. REPORTE.YFLAG),
PRWSTM7ýTJPEj_.EX (REPORT_.E..FLAG);
PRINTSTMLýTYPE_9EX (EPORTEY)LAG);
PRT...STMT_.TYPEjO...EX (REPORTEFLAG);

PRINT...HOWPRODUCED;
PRiNT_HOW_PRODUCEDJ-lJN (COUNT_TOTAL&E);
PRINT_HOWPRODUCED_2JN (COUNTTOTALSE);
PRINTHOWRODUCED..3_jN (COUNLTOTALS..E);
PRINT_HOWPRODUCED-.AJN (COUNT_TOTALS3.);
PRlTHOWPRODUCED..5_N (COUNTOTALS..E);
PRINTHOWPRODUCEDj6JN (COUNTTOTALSE);

PRInT.ORGIN;
P!RINTO0RGINJJNW (COUNTJTOTAIS3.);
PRlNT_0RGDN.2;
PRINT-.ORGHUiN.N (COUNT-TOTALS-E);
PRINT..ORGW_4AJN (COUNTTOTALS3);
PRINT-ORGWhL5JN (COUNTJTOTALSE);)
PRUNTrORGlN..AJN (COUNTOTALSEg);
PRlNTORGDLN..EX;

228

PRINT-ORGDO_8EX.
PRNT...ORGINAJIN (COUNT-TOTALSE);
W.INl-ORGINJOJN (COUNT-TOTALS..E);
PWIUNTORGINJLIN (COUNT-TOTALS-E);
PRIMN-ORGWINJ2JN (COUNTTOTALS-E);

- PRINTrREPORT-HEADER.2;

PDIUNLUSAGE;
PRINTJJSAGE-1-N (COUNT-TOTALS-E);
PT..._USAGE..Z.EX;

PRIDN-DEVELOPMENT-STA1VS;
FR1NT..DEVEOPMENT_-STATUS-JEX;
PRDINT DEVELOPMENT...STATUS_2...EX;
PRINTDEVIELOPMEENTSTATUSJ...EX;
PRIT..EVELOPNONT..STATUS-4-'EX;
PlT-DEVELOPMIENT..STATUSJ_EX;
PRINTýDEVELOPMiENLSTATWS_6...EX;
PRTINT-.DEVELOPhlINLSTATUS_7-EX;
PRUNT DEVELOPMEfNTSTATUS_8jN (COUNTTOTALS E);

RETRIEVE-J2D).PIN'RFACE_3DMAT (REPORT...E);

end REPORTýE;

procedure REPORT-F (COUNTJTOTALS_F: in COUNTTOTALSTYPE) is

REPORTFFILAG :integer := -1;
ESTIMATEDJTOTAL : DEVELOPMENTSTATUS := DEVELOPMIENT-STATUS'va](O);

begin

new..page (OUT_FIE,_TYPE);

new - ine (OUTI_FIL_TYPE, 2);
putjIine (OUTLFILETYPE, " REPORT F');
newjine (OUTI FILETYPE);

Pint-out..paneL3...settings;

PRINT]REPORT_-HEAD)ERP
new-line (OUTFILETYPE);
Put (OUT .FILE...TYPE, " Counted:)
Put (OUT-YILE-TYPE, COUNTJ-OTAL,_LINESF (COUNTJOTTAL&FY));
new-line (OUTFILETYPE);
put (OUTY.FIE.TYPE, " Estimated:)
put (OUT-FILEJTYPE, CNT-EST (ESTIMATEDJTOTAL, COUNTARRAYF));

229

nwwline (OLT-YILE-TYPE);
PRINT..REPORTjlHEADER.-2;
PRINT STMT-HEAIDER.
if RECORDJLIAGS-J.PANEL31INE-1 then

PRINT_.STMT_TYPE,_1_IN (COU-TJOTALSF, REPOR¶I-FYLAG);
else

PRINT_STMT_TYPEI_EX (REPORT _FJLAG);
end if-,

PRINT ..STMT-TYPE.2;

if RECORlLRAGSF.PANEL3JLINE.3 then
PRINLSTMT_-TYPE_3_IN (COUNT-TOTALSF, REPORLYFJLAG);

else
PRiNTSTMTJTYPE3JEX (REPRT-F-FLAG);

end if-,
if RECORDJ-LAGSF.ANEUL3.-N4 then

PRINLSTMTý_TYPE_4_IN (COUNTJTOTALSF, REPORTF-FLAG);
else
PRIT...S1TMJYPE_.4E9X (REPRT FFLAG);

end if-,

PRINTSTMTý_TYPE 5;

if RECORDFLAGS-.~PANEL3.LINE.6 then
PRJNLSTMT_TYPE_6_IN (COUNTJTOTALS_F, REPORLfFYLAG);

else
PRINTSTMTý_TYPE_6_EX (REPORT -F-LAG);

end if,
if RECORDFLAGSJYF.ANELLINE.j then
PRINT_STMLýTYPE.7jIN (COUNTOTALSF, REPORT-.YYLAG);

else
PRINT_STMTý_TYPE_7_EX (REPRTFFLAG);

end if-
if RECORDJFLAGSF.PANEL3-LlNE8 then

PRINTý_SThITTYPE_8_IN (COUNTJTOTALSF, REPORL-FYLAG);
else

PRINT_-STMTTYPE_8_EX (REPRT _F_.FLAG)*;
end if-
if RECORDFLAGSF.PANEL3IINE93 then
PRINTSTMTTYPE_9_IN (COUNT TOTALSF, REPORT-F-YLAG);

else
PRINT-STMrrTYPE_9_-EX (REPORTýFJLAG);

end if,
if RECORD_-FLAGS_F.PANEL3.INEJO1 then

PRINT1_STMTTYPE_10_IN (COUNTTOTALSF, REPORTFFLAG);
else

PRINT...STMTý_TYPE_10_EX (REPORTF_FLAG);
end if,

PRINTHOW_PRODUCED;

2-30

if RECORDFLAGS-F.PANEL4JJNE1 then
PRU-NLHOVL.PRODUCEDJJIN (COUNTTOTALS-Y);

else
PRINT-HOW-PRODUCED_1_EX;

end if,
if RECORDFLAGSF.PANEL4A.LNE_2 then

PRN4T..HOVLPRODUCED.Z-IN (COUNT_TOTALSY);
else

PRINT_HOW_PRODUCEQ.L2EX;
end if,
if RECORDJLAGS_F.PANEL4.LINE_3 then
PRINTHOWPRODUCED-3JN (COUNTTOTALS..Y);

else
PRINTHOWPRODUCEDJE3X;

end if,
if RECORDFLAGSF.PANEL4.LINE_4 then

PRINT_-HOW_PRODUCEDA.J-N (COUNTTOTALS..F);
else
PRITHO W.PRODUCEDAE4X;

end if;,
if RECORDFLAGSF.PANEL4.WL_5 then
PRINTHOW_PRODUCED..5 IN (COUNTJOTALSJ);
else
PRINTHOW_PRODUCEDJ.Y3X;

end if,
if RBCORDJLAGS_F.PANEL4.LDIN_6 then
PRN4TYOW.YRODUCED..AJN (COUNT_TOTALS_]);

else
PRINT_HOW_PRODUCED6_EX;

end if,

PRINTORGIN;

if RECORDFLAGS_F.PANEL5JJINE_1 then
PRR4T_.ORG~HU.jN (COUNTý_TOTALS F);

else
PRRNT..ORGIN_1_EX'

end if;

PRINTORGIN-2;

if RECORDFLAGSF.PANEUL5JLINE then
PRTýORGIN3jN (COUNTTOTALS..Y);

else
PRINT.ORGIN-3EX;

end if;
if RECORDFLAGSF.PANEL5.LINE-4 then

PRINTORGINAJN (COUNTTOTALSF);
else
PRINTORGIN_4_EX;

231

end if,
if RECORD-JLAGS..y.PANEL5INE..5 then
PRINLORGIN..5_N (COUNTTOTALSj);

else
PRN'T...ORGINL.5..EX;

end if,
if RECORD.YFLAGSP.PANEL5.LINE_6 then
PT...-ORGIN..6JN (COUNTTOTALS-Y);

else
PORrIRGIN_..6EX;

end if-,
if RECORD-LAOS-F.PANEL5.LINE-7 then
PRINT....ORGINJJ]N (,COUNLTOTALSYF);

else
PRINT...ORGIN_7_EX

end if-,
if RECORDFLAGS..f.PANEL5.LINE...8 then
PRINTLORGINL8JN (COUNLTOTALSF);

cels
PRINTLORGIN_8EX;

end if-,
if RECORD-YLAGS-.F.PANEL5L1INE...9 then
PRINLORGDLt9_N (COlJNTJOTALSF);

else
PRJNT_-ORGDhL9EX;

end if-,
if RECORDFLAGS-F.PANEL5L-INEJO0 then
PRINLORGWNJOJN (COUNTJTOTALS iF);

else
PRIT...ORGINJOLEX;

end if,
if RECORD_-FLAG&F.PANEL5.LINE-1 then
PRINT_-ORGINI 1_N (COUNTýJOTALSj);

else
PRINT...ORG~hI 1.EX;

end if;
if RECORDFLAGSF.PANEL5.LINE,_2 then
PRINT.OR0ThC12JN (COUNTTOTALSF).

else
PRINT_-ORGIN_12_EX;

end if;

-PRINT.REPORT_-HEAD)ER2;

PRINTJSAGE;

if RECORD FLAGSF.PANEL6LINE-1 then
PRINTUSAGE UN (COUNTToTALsF);

else
PRINT.USAGE_1_EX;

end if;

232

if RECORDFLAGSY.PANEL6.LIN`E2 then
PRITUSAGE-2_N (CQUNT-TOTALS-F);

else
PRINTLUSAGE_2_-EX;

end if,

PRINT_DEVELOPMENTSTATUS;

if RECORD_FLAGS_fRPANEL9J.UINEJl then
PRINLDEVELOPMENTSTATUS-1-N (COUNTTOTALSJF);

else
PRINTJ)DEVELOPMIENTSTATUSL-EX;

end if-,
if RECORDFLAGSF.PANEUL9NE-2 then

PRINTý_DEVELOPMNHTSTATUS_21N (COUNT_ýTOTALS-F);
else

PRINTDEVELOPMENT_STATUS_2_EX;
end if;,
if RECORD.FLAGSF.PANEL9IINE_3 then

PRINT) EVELOPMENTSTATUS_31IN (COUNTTOTALS.Y);
else

PRINT_-DEVELOPMENTSTATUS_3..EX;
end if;,
if RECORD_FLAGSF.PANEL9.LINE_4 then

PRINTDEVELOPMENTSTATUS_4-jN (COUNTTOTALsYF);
else

PRINTJ)DEVELOPMENTSTATUS_4_EX;
end if;
if RECORD_FLAGSF.PANEL9LINEý5 then

PRINT...DEVELOPMENTS$TATUS_L1N (COUNTTOTALS-J);
else

PRINT_-DEVELOPMENTSTATUS_5_EX;
end if,
if RECORD_FLAGS_f.PANEL9ILINER6 then

PRINT_-DEVELOPMENT-STATUS_6jIN (COUNTTOTALS-Y);
else

PRINTDEVELOPENTf?7_STATUS..._EX;
end if;,
if RECORD_FLAGSF.PANEL9.LINE-7 then

PRINT -DEVELOPMfENT_-STATUSL-EX;
else
PRINTý_DEVELOPMENTý_STATUS_7_EX;

end if,
if RECORD_FLAGS_F.PANE-L9LJ-NE-8 then
PRINT-)EVELOPMEENTSTATUS_81N (COUNTTOTALS-Y);

else
PRINT_)EVELOPMENTSTATUSSýEX;

end if,

PRINT_-DATAARkAY-F;

233

end REPORTjF;

procedure DETERMINEWHICHREPORT is

begin

if RECORD)_FLAGS.PANEL2.REPORTA then
COUNTA1TRIBIrEONE (RECORDý_FLAGSA, COUNTTIOTALS_A,

COUNT_ARRAY_A);
COUN-AlTRIBUMIEWO (RECORDFLAGSA, COUNTTOTALS_A,

COUNT_-ARRAY_A);
COUNT.AflRIBUTETHREE (RECORD_:FLAGS-A, COUNTTOTALS.A,

COUNTý_ARRAYA);
COUNT...ATTRIBUTEM_FOUR (RECORD FLAGSA, COUNT_TOTALSA,

COUNTARRY_A);
COUNTý_ATTRIBUTE_FIVE (RECORDFLAGSA, COUNTý_TOTALS_A,

COUNTARRYA);
REPORL-A (COUNT_-TOTALS A);

end if;,

if RECORDý_FLAGS.PANEL2REPORTB then
COUNTATRMIUTEONE (RECORDFLAGSB, COUNTTOTALSB,

COUNTARRYB);
COUNT_-A1TRIBUTEýTWO (RECORDý_FLAGSB, COUNT_-TOTALSB,

COUNTARRY_B);
COUNT_.ATTRIBUTE_-THREE (RECORD_-FLAGS...B, COUNT_TOTALS-B,

COUNT_-ARRAY_B);
COUNTATTRIBUTEFOUR (RECORD_.FLAGS3B. COUNT_-TOTALSB,

COUNT_.ARRAYB);
COUNTATTRIBUTE_.FIVE (RECORDFLAGS_B, COUNT_TOTALSB,

COUNT_-ARRAY_B);
REPORT -B (COUNT_-TOTALS B);

end if;

if RECORDFLAGS.PANEL2REPORTC then
COUNTý_AlTRIBUTEONE (RECORDFLAGS_C, COUNTTOTALSC,

COUNTARRAYC);
COUTNTATTRIBUTEý_TWO (RECORD_FLAGSC, COUNTTOTALSC,

COUNT_-ARRAYC);
COUNT_-ATTRIBUMTETREE (RECORQYfLAGSJ2, COUNTTOTALSC

COUNTARRY_C);
COUNT..ATTRIBUTE_-FOUR (RECORDFLAGS..C, COUNT_-TOTALS..C,

COUNTARRAYC);
COUNT_-ATTRIBUTEFIE (RFCORDFLAGSC, COUNTTOTALSC,

COUNTARRAYC);
REPORLC (COUNTTOTALS C);

end if,

234

if RECORDFLAGS.PANEL2.REPORTD then
COUNT_.ATrRIBUTEONE (RECORDFLAGS-D, COUNT_-TOTALSD,

COUNT-ARRAYD);
COUNT.ATITRBUTETWO (RECOR.DLAGS D, COUNTTOTALSD,

COUNT_-ARRAYJ));
COUNTATrR1BUTEJTHREE (RECORD_-FLAGS-D, COUNTTOTALSJ)D,

COUNTARRAY-D);
COUNTATTRJBUTE_-FOUR (RECORDIFLAGSD, COUNTTOTALSD,

COUNT_ARRAY...D);
COUNTAT7RIBUTE_FIVE (RECORDFLAGSD, COUNTTOTALSD,

COUNT_-ARRAYJ));
REPORT-D (COUNT -TOTALSýD);

end if;

if RECORDFLAGS.PANEL2.REPORTE then
COUNTATTRIBUTE-9NE (RECORDFLAGSE, COUNTý_TOTALSE,

COUNTý_ARRAY E);
COUNTýATfRBUTE,..TWO (RCORDFLAGS-E, COUNTTOTALSE,

COUNTARRAY..E);
COUNT...MTRIBUT`E-THREE (RECORDFLAGSE, COUNT_-TOTALS-E,

COUNTARRAY E);
COUNT1_A1T'RIBUTEFOUR (RECORD-FLAGS-E, COUNTTOTALSE,

COUNTARY-)
COUNTýATfR1BUTEFIVE (RECORD_FLAGSE, COUNTTOTALSE,

COUNT_-ARRAY_E);
REPORT -E (COUNTTOTAL&.E);

end if-,

if RECORD_FLAG S.PANEL2.REPORTF then
COUNTATTRIBUT'E_ONE (RECORDý_FLAGS-F, COUNT_-TOTALSF,

COUNTARRAY-F);
COUNTAlTRBUTETWO (RECORDý_FLAGS F, COUNTTOTALSF,

COUNT.-ARRAYJF);
COUNTATTRIBUTETHREE (RECORDFLAGS F, COUNTTOTALSF,

COUINTARRAY-);
COUNTý_ATTRIBUTEFOUR (RECORDFLAGS..Y, COUNTTOTALSF,

COUNT_ARRAY-F),
COUNT_AlTRBUTEFIVE (RECORDFLAGS-F, COUNTý_TOTALSF,

COUNTý_ARRAY-F);
REPORTIF (COUNT_-TOTALS-F);

end if;

end DETERMINEWHICH_-REPORT;,

end REPORTPACKAGE;

235

GENERIC PACKAGE SPEC AND BODY

--*Prograznmed
with textjio,

GLOBAL;
use texLio,

GLOBAL;

generic
type FIRSTJ-YPE is(>)
type SECOND_TYPE is(o)
type THIRDJTYPE is (<>);
type FOURTH_TYPE is(>)
type FIFTHTYPE is (<>);
type REPORTTYPE is(>)
type Tý_NUMIBERTYPE is range <>;
with function RETRIEVE (TYPE!I FJRSTJITYPE;

TYPE2: SECONDTYPE;,
TYPE3: THIRD-TYPE;
TYPE4: FOURTHTYPE;
TYPES: FU7TWTYPE;
TYPE6: REPORTý_TYPE) return natural;

with function CHECK_TYPE_-2 return Tý_NUMBER&TYPE;
with function CHECKTYPE_3 return TNUM[BER-TYPE;
with procedure PRINLROWHEADING (ROWNUM: positive);

package GENERIC_-COUNTS is

package INTEGERINý_OUT is new integer-io (integer);
use INTEGER_INLOUT%

package ENUMERATION_INý_OUT is new ENUMERATION_10 (STMýTJYPE);
use ENUMERATIONINý_OUT;

procedure INTIERFACE_2DMAT (T6: in REPORT-TYPE);

procedure INTRFACE_3DJAAT (T6: in RBPORT-TYPE);

end GENERICCOUNTS;

236

package body GENERICCOUNTS is

procedure HOWPRODUCEDHEADING (INNUM: positive := 20) is
TEMP : natural := INNUM- 1;

begin

if IN_NUM > 15 then
new-line (OUTFILETYPE);
put-line (OUT_FILETYPE," Programmed Generated Converted Copied Modified

Removed");
new jine (OUT_FILETYPE, 2);

else
if TEMP = 0 then
put (OUT-FILE TYPE," How produced.Programmed");

elsif TEMP = 1 then
put (OUTFILE_TYPE," How produced.Generated with source code generators");

elsif TEMP = 2 then
put (OUTFILETYPE," How produced.Converted with automated translators");

elsif TEMP = 3 then
put (OUT_FILE_TYPE," How produced.Copied or reused without change");

elsif TEMP = 4 then
put (OUTFILETYPE," How produced.Modified");

elsif TEMP = 5 then
put (OUT_FILEJTYPE," How produced.Removed");

end if;
end if;

end HOW_PRODUCEDHEADING;

procedure STMTTYPEHEADING (INNUM: positive := 20) is
TEMP : natural := IN_NUM- 1;

begin

if INNUM > 15 then
newine (OUTFILE_TYPE);
puLline (OUTFILETYPE," Exec Dec Pragma Cmmts Cmmts w_other

Banner Empty Blank");
newjine (OUTFILETYPE, 2);

else
if TEMP = 0 then
put (OUT._FILE_TYPE," Statement type.Executable");

elsif TEMP = 1 then
put (OUTFILE_TYPE," Statement type.Declarations");

elsif TEMP = 2 then
put (OUTFILE_'YPE," Statement type.Compiler Directives");

elsif TEMP = 3 then
put (OUTFILETYPE," Statement type.Comments on their own lines");

237

elsif TEMP = 4 then
put (OUT _FILETYPE," Statement type.Comments on lines with source code");

elsif TEMP = 5 then
put (OUTFILETYPE," Statement type.Banners and nonblank spacers"):

elsif TEMP = 6 then
put (OUJTFILE_TYPE, " Statement type.Blank (empty) comments");

elsif TEMP = 7 then
put (OUT_FILETYPE," Statement type.Blank lines");

end if;
end if;

end STMI"TYPE_HEADING;

procedure USAGEHEADING (INNUM: positive:= 20) is
TEMP : natural := IN_NUM- 1;

begin

if IN_NUM > 15 then
new-line (OUT_FILE_TYPE);
puLline (OUTFILETYPE," Primary External");
new line (OUT_FILE_TYPE, 2);

else
if TEMP = 0 then
put (OUT-FILETYPE," Usage.In or as part of the primary product");

elsif TEMP = 1 then
put (OUT_FILETYPE," Usage.External to or in support of the primary product");

end if,
end if;

end USAGEHEADING;

procedure DEVELOPMENT_STATUS_HEADING (INNUM: positive := 20) is

TEMP : natural := IN_NUM- 1;

begin

if IN4NUM> 15 then
new-line (OUT_FILE_TYPE);
put-line (OUT_FILE_TYPE," Est Designed Coded Unit test Integrated

Readiness CSCI System Tests");
new-line (OUTFILE_TYPE, 2);

else
if TEMP = 0 then
put (OUTFILETYPE," Development Status.Estimated or planned");

elsif TEMP = I then

238

put (OUTFILEJTYPE," Development Status.Designed");
elsif TEMP = 2 then
put (OUTFILETYPE," Development Status.Coded");

elsif TEMP = 3 then
put (OUTFIL.ETYPE," Development Status.Unit tests completed");

elsif TEMP = 4 then
put (OUTFILETYPE," Development Status.Integrated into components");

elsif TEMP = 5 then
put (OUT [FILETYPE." Development Status.Test readiness completed");

elsif TEMP = 6 then
put (OUT.YILE-TYPE, " Development Status.Software (CSCI) tests completed"),

elsif TEMP = 7 then
put (OUTFILE-TYPE," Development Status.System tests completed");

end if;
end if;

end DEVELOPMENTSTATUS_HEADING;

procedure ORGIN_HEADING (IN_NUM: positive := 20) is

TEMP : natural := INNUM- 1;

begin

if IEMP = 0 then
put (OUTTFLETYPE," Orgin.New work");

elsif TEMP = 1 then
put (OUT._FILE_TYPE, " Orgin.Previos version");

elsif TEMP = 2 then
put (OUTY_FILETYPE," Orgin.COTS");

elsif TEMP = 3 then
put (C"1-r_FRJE_TYPE, " Orgin.GFS");

elsif ThILIP = 4 then
put (OUTFY.E_TYPE, " Orgin.Annother product");

elsif TEMP = 5 then
put (OUT_FILETYPE," Orgin.A vendor supplied language support library");

elsif TEMP = 6 then
put (OUTFR.ETYPE, - Orgin.A vendor supplied operating system or utility");

elsif TEMP = 7 then
put (OUTFRETYPE," Orgin.A local or modified language support library");

elsif TEMP = 8 then
put (OUTFILETYPE," Orgin.Other commercial library");

elsif TEMP = 9 then
put (OUT._FLETYPE," Orgin.A reuse library");

elsif TEMP = 10 then
put (OUT._FILETYPE, " Orgin.Other software component or library");

end if;

new-line (OUT_FILE_TYPE);

239

end ORGIN_HEADING;

function GEN_2DMAT (FIX_1 : in FIRSTTYPE;
F1X2 : in SECOND_TYPE;
NT6: in REPORTTYPE) return natural is

SUM : natural:= 0;

begin

for T3 in THIRDTYPE'first .. THIRDTYPE'last loop

for T4 in FOURTH_TYPE'first.. FOURTHTYPE'Iast loop

for TS in FIFTHTYPE'first.. FIFTHTYPE'last loop

SUM:= SUM + RETRIEVE (FIXJl, FIX2, T3, T4, T5, INT6);

end loop;

end loop;

end loop;

return SUM;

end GEN_2DMAT;

function GEN 3DMAT (FIX_ : in FIRSTTYPE;
FIX_2: in SECOND_TYPE;
FIX_3: in THIRD_TYPE;
IN_T6: in REPORTTYPE) return natural is

SUM : natural:= 0;

begin

for T4 in FOURTH_TYPE'first .. FOURTH_TYPE'last loop

for T5 in FIFTHTYPE'first.. FIFTHTYPE'last loop

SUM:= SUM + RETRIEVE (FIX_1, FIX_2, FIX_3, T4, T5, INRT6);

end loop;

end loop;

240

return SUM;

end GEC3D...MAT;

Procedure INTERFACE_-2DMAT (r6: in REPORT-TYPE-) is

type MATTYPE is array (FIRSTJTYPE, SECOND5TYPE) of natura;
MAT :MAT-TYPE;
T2..NUMBER T..NUMBER.TYPE;
LOOP...NUM :positive := 1;
TYPE-TWO :positive: 2;

begin

for TI in FIRST_TYPE'first .. FIRSTTYPE'last loop

for 17 in SECOND..TYPE'first .. SECONDTYPE'iast loop

MAT (TI, 12):= GEN...D..MAT (T I, T2, T6);

end loop;
end loop;

12_NUMBER := cHEcK..TyPE...2;

if T2-NUMBER = 1 then
HOW._PRODUCED_-HEADING;

elsif 127-.NUMBER = 2 then
STMITTYPEHEADING;,

elsif 12_NUMBER = 3 then
USAGE-HEADING;

elsif 12_-NUMBER = 4 then
DEVELOPMENL-STATUSHEADING;

end if;

for TI in FIRSTý_TYPE'first .. FIRSTý_TYPE'last loop
PRINT_ROWHBEADING (LOOPYUM);
for 12 in SECOND_TYPE'first .. SECOND)_TYPE'last loop
Put (OUT FILEfTYPE, MAT (Ti, T-2), width => 10);

end loop;
new-fine (OUTFILETYPE, 2);
LOOPY..NM := LOOP_-NUM + 1;

end loop;

end INTERFACE-2D MAT;

Procedure INTlERFACE_3DM[AT (T6: in REPORTJTyPE) is

241

type MAT.JYPE is armay (FIRSTM'P, SECONIDJYPE) of natural;
MAT :MATTYPE;
LOOP..,NUM-.3 :positive := 1;
LOOP..NUM-2 positive: 1;
7T3_.NUMBER :TJ4_UMDBERTYPE;
72-NUMBER :TJ4-UMBER-TYPE,
TYPE..TrEE positive :-3;

begin

--Need to find out the type of the third dimension
7T-LNMBER := CHECK-TYPIR-3;
T2,YUMBER :- CHECK-TYPE.,2;

new~jine (OUT_-FILETYPE, 2);
-- need to loop through 3rd type here
for 73 in TI{IRDJYPE'first. THIRDJ-YPE'last loop

- Creating a two dimensional array with the same third dimesion
- staying constant
for Ti in FIRST-TYPE'first. FIRSTJTYPE'last loop

for T2 in SECONDTYPE'fir-st .. SECONDTYPE'last loop

MAT (TI, 72):= GEN3Dý_MAT (T I, T2T3, T6);

end loop;
end loop;

- need to output the thrid dimernsion heading here

if T3_NUMBER = 1 then
HO WPRODUCED _HEADING (LOOPý_NUM_3);

elsif Th..NUMBER = 2 then
STM9T3YPE_-HEADING (LOOPýNUM..3);

elsif T3YNUMBER = 3 then
null;

elsif 13_-NUMBER = 4 then
DEVELOPMENLISTATUSHEADING (LOOPýNUJM 3);

elsif 13_NUMBER -=5 then
ORGINHEADING (LOOPNUM_3);

end if;

- Need to output the second dimension as column headings
- Finding which type is the second dimension
if 12_-NUMBER = 1 then

HOW-PRODUCED _HEADING;
elsif 12_NUMBER = 2 then

STMTTYPELHEADING;
elsif T2.-NUMBER = 3 then

USAGE)IHEADING;

242

elsif 12-NUMBER = 4 then
DEVELOPMENT..STA11JSHADING;

end if,

- Printing out the contents of the two dimensional matrix
for TI in FIRST_-TYPE'first. FIRST-TYPE'last loop
PRINT_-ROW-HEADING (LOOPY-UM-2)*;
for 1'2 in SECONDTYPE'first. SECONDJYPE'last loop

put (OUIT..FELEý_TYPE, MAT (TI, T2), width => 10);
end loop;
new-line (OUTFILETYPE, 2);,
LOOP..NUM..2 := LOOPyUM..2 + 1;

end loop;

LOOP_-NJM_2:= 1;

LOOP_-NUM_3:= LOOP_-NUM_3 +1;

end loop;

end INTERFACE 3D MAT;

end GENERICCOUNTS;

243

APPENDIX C. EXTEND SAMPLE INPUT AND OUTPUT

Contents of File list Example

taskpackage.a

Extended Example Input

- TITLE : CS 4530 Class Project, Lander
- AUTHOR : Kevin J. Walsh and Robert R. Ordonio
- DATE : 21 November 1992
- REVISED : 22 Nov, 24 Nov,
- COURSE : CS 4530, Software Engineering with ADA
- SYSTEM : UNIX
- COMPILER : Vads6

DESCRIPTION : Package contains all the tasks required for the Lander Program

- 22 Nov (1) Added code to CALCULATE task. Code was to test for the ending
- conditions, and to be able to exit the loop, and terminate
- the task when ending condition was found.
-- 24 Nov (1) Reinserted the stop entry call into input task, this will be
- called by the calculate task after the input is complete
- (2) Recoded CALCULATE task to perform calculations
- 27 Nov (1) Integrated keytime code into this package.

with DATAJYPES,
UTRT_PKG,
CURRENEXCEP-TION,
TEXTIO,
IOCTL,
Try.

OS_FILES;
use DATATYPES,

UTILITYPKG,
TEXT IO;

package TASKPACKAGE is

- Declaration of local variables used with the package
sgttyb-buf: tty.sgttyb;
old-flags shortinteger,

- Instaniation of Enumeration 10 to output ROCKETCONTROLNPUT variable
package ''OCKETCONTROLINPUTjO is new enumerationjo

(ROCFI _,ONTROLINPUI;
use ROCKETCONTROLjNPYUT..O;

- Instaniation of Enumeration 10 to output the various rocket moter

244

- variables, rocket positions and fuel capacity.
package FUEL_10 is new floa.io (FUEL);
use FUEL IO;

- Task will perform all calculations for the program
task CALCULATETASK is

entry INPUT (ROCKET-DIRECTION: in ROCKETCONTROLJINPUT);
end CALCULATETASK;

- Task will allow the user to input information to the program
task KEYREAD is
entry START;

end KEYREAD;

end TASKPACKAGE; -- Package specification for taskpackage

- Package body for TASKPACKAGE
package body TASKPACKAGE is

- Declaration of local variables used with package
CRASHEXCEPTION,
MISSEXCEPTlON,
SKIDEXCEPTION : exception;

-- Task allows the user to input data to the program.

-- Task will verify input to ensure that input is valid

task body KEYREAD is

CHARACTERINPUT : ROCKET.CONTROLIJNPUT;
CHARACTERJO : character,
DONE boolean:= FALSE;
TEST natural;

begin

select
accept start;

or
terminate;

end select;

loop
- Get information from the user
get (CHARACTER._O);
-- Determine what the user wants to do
case CHARACTER_10 is

when 'u' =>
test:= 0;

245

when 'i Z
test :- 1;

when ' ->
test := 2;

when 'p' =>
test := 3;

when h' =>
test := 4;

when 'j =>
test := 5;

when 'k' ->
test:- 66;

when '1' =>
test := 7;

when 'V" =>
test := 8;

when 'b' ->
test:= 9;

when 'n' =>
test := 10;

when m =>
test:= 11;

when others =>
new_line (2);
putline (" You have entered the wrong input. Please try again!");

end case;
- Convert input to rocket control input
CHARACTMEINPUT := ROCKETCONTROLINPUT'VAL(ITST);
CALCULATETASKINPUT (CHARACTERINPUT):

end loop;

exception
when others =>
new ine(2);
putjline(current.exception.exception-namne & "raised in calculate task.");
newjine(2);
putline('Exiting from the input task. ");
new_line(2);

end keyread;

-- Task will perform all calculations for the program. Task
-. will also check landing and call display procedure to
- show status of lander information.

task body CALCULATETASK is

- Declaration of variables used with the task
CONTROL-ROCKET : ROCKET_CONTROL_INPUT;

246

TEST natural;

begin

loop

- Option to handle user input
accept INPUT (ROCKET_-DIRECTION: in ROCKELýCONTROL~jNPUT) do
CONTROL,.ROCKT := ROCKET _DIRECTION;

end INPUT;
or~

-- No user input therefore calculate with previous data
delay 1.0;

CONTROL_-ROCKET := A;
end select;

- Conditional to determine if lander has fuel to manipulate rockets
if FUJELLEFT > 0.0 then

case CONTROL,_ROCKET is
when U =>
POSITIVEROCKETS.X := POSITIVE...ROCKETS.X + 1.0;

when I =>
if POSrITVEL.ROCKETS.X > 0.0 then
POSITIVEROCKETS.X := POSMfE,_ROCKETS.X - 1.0;

end if;
when 0 =>

NEGATIVE..ROCKETS.X: NEGATIVEROCKETS.X + 1.0;
when P =>
if NEGATIVE _ROCKETS.X > 0.0 then

NEGATIVEROCKETS.X := NEGATWVEROCKETS.X - 1.0;
end if;,

when H =>
POSMITIV_ROCKETS.A := POSITIVE_ROCKETS.Y + 1.0;

when J =>
if POSITIVEL.ROCKETSY > 0.0 then

POSMTVEL.ROCKETS.Y := POSmTVELROCKETS.Y - 1.0;
end if;,

when K =>
NEGATIVEROCKETS.Y := NEGATIVE..ROCKETS.Y + 1.0;

when L =>
if NEGATIVELROCKETS.Y > 0.0 then
NEGATIVEROCKETS.Y := NEGATIVELROCKETS.Y - 1.0;

end if;
when V =>
POSITIVEROCKETS.Z:= POS1TIVE-.ROCKETS.Z + 1.0;

when B =>
if POSmTVE...ROCKETS.Z > 0.0 then

POSITIVEL.ROCKIETS2Z:= POSITIVEROCKETS.Z - 1.0;
end if,

247

when N =>
NEGAI1VW..ROCKETS2: NEGATIVE...ROCKETS2 + 1.0;

when M =>
if NEGATIVEROCKETS.Z > 0.0 then

NEGATIVE.,ROCKETS2Z:- NEGATIVEROCKETS.Z - 1.0;
end if-,

when OTHERS =>
null-,

end case;
else

_ FUEL-LEFT - 0 therefore all engines should be at 0.0
POSITIVE...ROCKETS := (others => 0.0);,
NEGATIVE_.ROCKFI'S :- (others -> 0.0);

end if,

- Calculation for new current position
CURRENTyOSMTONS.X -- CURRENTPOSMTONS.X +DELTAVECTOR.X;
CURRENT.POSMTONS.Y: CURRENT-POSmTONS.Y+ DELTA...VECTOR.Y;
CURRENT..YSMTONSZ: CURRENT.POSMTONS.Z + DELTA-VECTORZ;

- Calculation for new delta vector
DELTA-VECTOR.X POSITIVEROCKETS.X - NEGATIVEROCKETSX;
DELTA,_VECTOR.Y POSITIVE_ROCKETS.Y - NEGATIVE...ROCKETS.Y;
DELTA,_VECT`OR.Z :POSrITVE...ROCKETS.Z- NEGATIVEROCKETS2Z- 9.8;

- Calculation for new fuel left value
FUIEL...LEFT FULILEFT - (POSIT1VELROCKETS.X +

POSrITVE_.ROCKETS.Y +
POSITIVELROCKETS2 +
NEGATIVEROCKETS.X
NEGATIVE-ROCKETS.1 +
NEGA1TIV]EROCKETS.)

-Procedure to display to screen position and info
DISPLAY (FUEL..LEFr, POSMTV]E..ROCKETS, NEGATIVE..ROCKETS,

DELTAVECTOR,
START...POSITIONS, CURRENTPOSITIONS, FINAL-POSITONS);

- Test to determine if current position Z lower tha final position Z
if CURRENTPOSITIONS.Z <-- FINAL.,_POSITONSZ then

exit;
endif-,

end loop; -- Main initial loop to cycle through calculation task

- EVALUATE THE LOCATION AND VELOCITY OF LANDER
if NUS S..DISTANCE (CURRENT_POSITIONS.X,

FINALPOSMONS.X,
CURRENT_.OSMTONS.Y,
FINAL_POSITONS.Y) then

-LANDING IS CONSIDERED A MISS

248

raise MISSEXCEPTION;

elsif SKIDDISTANCE (DELTA_VECTOR.X,
DELTAVECTOR.Y) then

- LANDING IS CONSIDERED A SKID
raise SKIDEXCEPTION;

elsif CRASHDISTANCE (DELTAVECTORZ) then
- LANDING IS CONSIDERED A CRASH
raise CRASHEXCEPTION;

else
- LANDING IS CONSIDERED A SUCCESS!!
new-line(2);
put_ine("CONGRATULATIONS. Successful landing accomplished. ");
new •hne(2);
abort KEYREAD;

end if;

exception
when MISS_EXCEPTION =>
new-fine (2);
put-line C" SORRY, BUT THE LANDING IS CONSIDERED A MISS");
puLline (" Calculations stopped, program aborted. ");

new-line (2);
abort KEYREAD;

when SKIDEXCEPTION =>
new-line (2);
put_line (" SORRY, BUT THE LANDING IS CONSIDERED A SKID");
putline (" Calculations stopped, program aborted. ");
new line (2);
abort KEYREAD;

when CRASHEXCEPTION =>
new-line (2);
put_line (" SORRY, BUT THE LANDING IS CONSIDERED A CRASH");
new-line (2);
abort KEYREAD;

end CALCULATEJASK;

end TASKPACKAGE; -- Package body for task-package

249

Extended Example Output

REPORT A

Report Name: Thesis example
File List used: example
Requested by: Kevin J. Walsh

Measured as: Physical source lines

Delivered as: Delivered as source

Counted: 193
Estimated: 0

Total Total Individual
Includes Excludes totals

Statement type
When a line or statement contains more than
one type, classify it as the type with the
highest precedence.

I Executables Precedence => I XXXX 157
2 Nonexecutables
3 Declarations 2 XXXX 36
4 Compiler Directives 3 XXXX 0
5 Comments
6 On their own lines 4 XXXX 0
7 On lines with source code 5 XXXX 0
8 Banners and nonblank spacers 6 XXXX 0
9 Blank (empty) comments 7 XXXX 0
10 Blank lines 8 XXXX 0

How Produced

I Programmed XXXX 193
2 Generated with source code generators XXXX 0
3 Converted with automated translators XXXX 0
4 Copied or reused without change XXXX 0
5 Modified XXXX 0
6 Removed XXXX 0

Orgin

1 New Work: no prior existence XXXX 193

250

2 Prior work: taken or adapted from
3 A previous version, build, or release XXXX 0
4 Commercial, off the shelf software

COTS), other than libraries XXXX 0
5 Government furnished software (GFS),

other than reuse libraries XXXX 0
6 Another product XXXX 0
7 A vendor-supplied language support

library (unmodified) XXXX 0
8 A vedor-supplied operating system or

utility (unmodifed) XXXX 0
9 A local or modified language support

library or operating system XXXX 0
10 Other commercial library XXXX 0
11 A reuse library (software designed

for reuse) XXXX 0
12 Other software component or library XXXX 0

Usage

1 In or as part of the primary product XXXX 193
2 External to or in support of the

primary product XXXX 0

Development Status

I Estimated or planned XXXX 0
2 Designed XXXX 0
3 Coded xxxx 0
4 Unit tests completed XXXX 0
5 Integrated into components XXXX 0
6 Test readiness review completed XXXX 0
7 Software (CSCI) tests completed XXXX 0
8 System tests completed XXXX 193

251

REPORT B

Report Name: Thesis example
File List used: example
Requested by: Kevin J. Walsh

Measured as: Physical source lines

Delivered as: Delivered as source

Counted: 193
Estimated: 0

Total Total Individual
Includes Excludes totals

Statement type
When a line or statement contains more than
one type, classify it as the type with the
highest precedence.

1 Executables Precedence => 1 XXXX 157
2 Nonexecutables
3 Declarations 2 XXXX 36
4 Compiler Directives 3 XXXX 0
5 Comments
6 On their own lines 4 XXXX 0
7 On lines with source code 5 XXXX 0
8 Banners and nonblank spacers 6 XXXX 0
9 Blank (empty) comments 7 XXXX 0
10 Blank lines 8 XXXX 0

How Produced

1 Programmed XXXX 193
2 Generated with source code generators XXXX 0
3 Converted with automated translators XXXX 0
4 Copied or reused without change XXXX 0
5 Modified XXXX 0
6 Removed XXXX 0

Orgin

1 New Work: no prior existence XXXX 193
2 Prior work: taken or adapted from
3 A previous version, build, or release XXXX 0
4 Commercial, off the shelf software

COTS), other than libraries XXXX 0

252

5 Government furnished software (GFS),
other than reuse libraries XXXX 0

6 Another product XXXX 0
7 A vendor-supplied language support

library (unmodified) xXXX 0
8 A vedor-supplied operating system or

utility (unmodified) XXXX 0
9 A local or modified language support

library or operating system XXXX 0
10 Other commercial library XXXX 0
11 A reuse library (software designed

for ruse) XXXX 0
12 Other software component or library XXXX 0

Usage

1 In or as part of the primary product XXXX 193
2 External to or in support of the

primary product XXXX 0

Development Status

I Estimated or planned XXXX 0
2 Designed XXXX 0
3 Coded XXXX 0
4 Unit tests completed XXXX 0
5 Integrated into components XXXX 0
6 Test readiness review completed XXXX 0
7 Software (CSCI) tests completed XXXX 0
8 System tests completed XXXX 193

Programmed Generated Converted Copied Modified Removed

Estimated or

planned 0 0 0 0 0 0

Designed 0 0 0 0 0 0

Coded 0 0 0 0 0 0

Unit tests com-
pleted 0 0 0 0 0 0

Integrated into
components 0 0 0 0 0 0

Test readiness
review com-
pleted 0 0 0 0 0 0

253

Software (CSCI)
tests completed 0 0 0 0 0 0

System tests
completed 193 0 0 0 0 0

254

REPORT C

Report Name: Thesis example
File List used: example
Requested by: Kevin J. Walsh

Measured as: Physical source lines

Delivered as: Delivered as source

Counted: 240
Estimated: 0

Total Total Individual
Includes Excludes totals

Statement type
When a line or statement contains more than
one type, classify it as the type with the
highest precedence.

1 Executables Precedence => 1 XXXX 157
2 Nonexecutables
3 Declarations 2 XXXX 36
4 Compiler Directives 3 XXXX 0
5 Comments
6 On their own lines 4 XXXX 47
7 On lines with source code 5 XXXX 0
8 Banners and nonblank spacers 6 XXXX 0
9 Blank (empty) comments 7 XXXX 0
10 Blank lines 8 XXXX 0

How Produced

1 Programmed XXXX 240
2 Generated with source code generators XXXX 0
3 Converted with automated translators XXXX 0
4 Copied or reused without change XXXX 0
5 Modified XXXX 0
6 Removed XXXX 0

Orgin

I New Work: no prior existence XXXX 240
2 Prior work. taken or adapted from
3 A previous version, build, or release XXXX 0
4 Commercial, off the shelf software

255

COTS), other than libraries XXXX 0
5 Government furished software (GFS),

other than reuse libraries XXXX 0
6 Another product XXXX 0
7 A vendor-supplied language support

library (unmodified) XXXX 0
8 A vedor-supplied operating system or

utility (unmodid XXXX 0
9 A local or modified language support

library or operating system XXXX 0
10 Other commercial library XXXX 0
11 A reuse library (software designed

for reuse) XXXX 0
12 Other software component or library XXXX 0

Usage

1 In or as part of the primary product XXXX 240
2 External to or in support of the

primary product XXXX 0

Development Status

1 Estimated or planned XXXX 0
2 Designed XXXX 0
3 Coded XXXX 0
4 Unit tests completed XXX= 0
5 Integrated into components XXX= 0
6 Test readiness review completed XXX= 0
7 Software (CSCI) tests completed XXXX 0
8 System tests completed XXXX 240

Programmed Generated Converted Copied Modified Removed

Executable 157 0 0 0 0 0

Declarations 36 0 0 0 0 0

Compiler dir-
ectives 0 0 0 0 0 0

Comments on
their own line 47 0 0 0 0 0

Comments on
lines with
source code 0 0 0 0 0 0

Banner and non-
blank spacers 0 0 0 0 0 0

256

Blank (empty)
comments 0 0 0 0 0 0

Blank lines 0 0 0 0 0 0

257

REPORT D

Report Name: Thesis example
File List useda example
Requested by: Kevin J. Walsh

Measured as: Physical source lines

Delivered as: Delivered as source

Counted:- 193
Estimated: 0

Total Total Individual
Includes Excludes totals

Statement type
When a line or statement contains more than
one type, classify it as the type with the
highest precedence.

I Executables Precedence => I XXXX 157
2 Nonexecutables
3 Declarations 2 XXXX 36
4 Compiler Directives 3 XXXX 0
5 Comments
6 On their own lines 4 XXXX 0
7 On lines with source code 5 XXXX 0
8 Banners and nonblank spacers 6 XXXX 0
9 Blank (empty) comments 7 XXXX 0
10 Blank lines 8 XXXX 0

How Produced

I Programmed XXXX 193
2 Generated with source code generators XXXX 0
3 Converted with automated translators XXXX 0
4 Copied or reused without change XXXX 0
5 Modified XXXX 0
6 Removed XXXX 0

Orgin

1 New Work: no prior existence XXXX 193
2 Prior work: taken or adapted from
3 A previous version, build, or release XXXX 0
4 Commercial, off the shelf software

COTS), other than libraries XXXX 0

258

5 Government furnished software (GFS).
other than reuse libraries XXXX 0

6 Another product XXXX 0
7 A vendor-supplied language support

library (unmodified) XXXX 0
8 A vedor-supplied operating system or

utility (unmodified) XXXX 0
9 A local or modified language support

library or operating system XXXX 0
10 Other commercial library XXXX 0
11 A reuse library (software designed

for reuse) XXXX 0
12 Other software component or library XXXX 0

Usage

1 In or as part of the primary product XXXX 193
2 External to or in support of the

primary product XXXX 0

Development Status

I Estimated or planned XXXX 0
2 Designed XXXX 0
3 Coded XXXX 0
4 Unit tests completed XXXX 0
5 Integrated into components XXXX 0
6 Test readiness review completed XXXX 0
7 Software (CSCI) tests completed XXXX 0
8 System tests completed XXXX 193

Programmed Generated Converted Copied Modified Removed

New Work: no
prior existence 193 0 0 0 0 0

A previos ver-
sion, build,
or release 0 0 0 0 0 0

COTS 0 0 0 0 0 0

GFS 0 0 0 0 0 0

Another product 0 0 0 0 0 0

A vendor suppl-
ied language
support library 0 0 0 0 0 0

259

A vebdor-suppl-
ied operating
system or
utility 0 0 0 0 0 0

A local or mod-
ified language
support library
or operating
system 0 0 0 0 0 0

Other commer-
cial library 0 0 0 0 0 0

A reuse library
(software
designed for
reuse 0 0 0 0 0 0

Other software
component or
library 0 0 0 0 0 0

260

REPORT E

Report Name: Thesis example
File List used: example
Requested by: Kevin J. Walsh

Measured as: Physical source lines

Delivered as: Delivered as source

Counted: 240
Estimated: 0

Total Total Individual
Includes Excludes totals

Statement type
When a line or statement contains more than
one type, classify it as the type with the
highest precedence.

I Executables Precedence => I XXXX 157
2 Nonexecutables
3 Declarations 2 XXXX 36
4 Compiler Directives 3 XXXX 0
5 Comments
6 On their own lines 4 XXXX 47
7 On lines with source code 5 XXXX 0
8 Banners and nonblank spacers 6 XXXX 0
9 Blank (empty) comments 7 XXXX 0
10 Blank lines 8 XXXX 0

How Produced

1 Programmed XXXX 240
2 Generated with source code generators XXXX 0
3 Converted with automated translators XXXX 0
4 Copied or reused without change XXXX 0
5 Modified XXXX 0
6 Removed XXXX 0

Orgin

I New Work: no prior existence XXXX 240
2 Prior work. taken or adapted from
3 A previous version, build, or release XXXX 0
4 Commercial, off the shelf software

COTS), other than libraries XXXX 0

261

5 Government furished software (GPS),
other than reuse libraries XXXX 0

6 Another product XXXX 0
7 A vendor-supplied language support

library (unmxdified) XXXX 0
8 A vedor-supplied operating system or

utility (unmodfied) XXXX 0
9 A local or modified language support

library Or operating system XXXX 0
10 Other commercial library XXXX 0
11 A reuse library (software designed

for reuse) XXXX 0
12 Other software component or library XXXX 0

Usage

I In or as part of the primary product XXXX 240
2 External to or in support of the

primary product XXXX 0

Development Status

1 Estimt d or planned XXXX 0
2 Designed XXXX 0
3 Coded XXXX 0
4 Unit tests completed XXX) 0
5 Integrated into components XXXX 0
6 Test readiness review completed XXXX 0
7 Software (CSCI) tests completed XXXX 0
8 System tests completed XXXX 240

Orgin.New work

Programmed Generated Converted Copied Modified Removed

Executable 157 0 0 0 0 0

Declarations 36 0 0 0 0 0

Compiler dir-
ectives 0 0 0 0 0 0

Comments on
their own line 47 0 0 0 0 0

Comments on
lines with
source code 0 0 0 0 0 0

262

Banner and non-
blank spacers 0 0 0 0 0 0

Blank (empty)
comments 0 0 0 0 0 0

Blank lines 0 0 0 0 0 0

Orgin.Previos version

Programmed Generated Converted Copied Modified Removed

Executable 0 0 0 0 0 0

Declarations 0 0 0 0 0 0

Compiler dir-
ecti-es 0 0 0 0 0 0

Comments on
their own line 0 0 0 0 0 0

Comments on
lines with
source code 0 0 0 0 0 0

Banner and non-
blank spacers 0 0 0 0 0 0

Blank (empty)
comments 0 0 0 0 0 0

Blank lines 0 0 0 0 0 0

Orgin.COTS

Programmed Generated Converted Copied Modified Removed

Executable 0 0 0 0 0 0

Declarations 0 0 0 0 0 0

Compiler dir-
ectives 0 0 0 0 0 0

Comments on
their own line 0 0 0 0 0 0

Comments on

263

lines with
source code 0 0 0 0 0 0

Banner and non-
blank spacers 0 0 0 0 0 0

Blank (empty)

comments 0 0 0 0 0 0

Blank lines 0 0 0 0 0 0

Orgin.GFS

Programmed Generated Converted Copied Modified Removed

Executable 0 0 0 0 0 0

Declarations 0 0 0 0 0 0

Compiler dir-
ectives 0 0 0 0 0 0

Comments on
their own line 0 0 0 0 0 0

Comments on
lines with
source code 0 0 0 0 0 0

Banner and non-
blank spacers 0 0 0 0 0 0

Blank (empty)
comments 0 0 0 0 0 0

Blank lines 0 0 0 0 0 0

Orgin.Annother product

Programmed Generated Converted Copied Modified Removed

Executable 0 0 0 0 0 0

Declarations 0 0 0 0 0 0

Compiler dir-
ectives 0 0 0 0 0 0

Comments on

264

their own line 0 0 0 0 0 0

Comments on
lines with
source code 0 0 0 0 0 0

Banner and non-
blank spacers 0 0 0 0 0 0

Blank (empty)
comments 0 0 0 0 0 0

Blank lines 0 0 0 0 0 0

Orgin.A vendor supplied language support library

Programmed Generated Converted Copied Modified Removed

Executable 0 0 0 0 0 0

Declarations 0 0 0 0 0 0

Compiler dir-
ectives 0 0 0 0 0 0

Comments on
their own line 0 0 0 0 0 0

Comments on
lines with
source code 0 0 0 0 0 0

Banner and non-
blank spacers 0 0 0 0 0 0

Blank (empty)

comments 0 0 0 0 0 0

Blank lines 0 0 0 0 0 0

Orgin.A vendor supplied operating system or utility

Programmed Generated Converted Copied Modified Removed

Executable 0 0 0 0 0 0

Declarations 0 0 0 0 0 0

Compiler dir-

265

ectives 0 0 0 0 0 0

Comments on
their own line 0 0 0 0 0 0

Comments on
lines with
source code 0 0 0 0 0 0

Banner and non-
blank ipacers 0 0 0 0 0 0

Blank (empty)

comments 0 0 0 0 0 0

Blank lines 0 0 0 0 0 0

Orgin.A local or modified language support library

Programmed Generated Converted Copied Modified Removed

Executable 0 0 0 0 0 0

Declarations 0 0 0 0 0 0

Compiler dir-
ectives 0 0 0 0 0 0

Comments on
their own line 0 0 0 0 0 0

Comments on
lines with
source code 0 0 0 0 0 0

Banner and non-
blank spacers 0 0 0 0 0 0

Blank (empty)
comments 0 0 0 0 0 0

Blank lines 0 0 0 0 0 0

Orgin.Other commercial library

Programmed Generated Converted Copied Modified Removed

Executable 0 0 0 0 0 0

266

Declarations 0 0 0 0 0 0

Compiler dir-
ectives 0 0 0 0 0 0

Comments on
their own line 0 0 0 0 0 0

Comments on
lines with
source code 0 0 0 0 0 0

Banner and non-
blank spacers 0 0 0 0 0 0

Blank (empty)

comments 0 0 0 0 0 0

Blank lines 0 0 0 0 0 0

Orgin.A reuse library

Programmed Generated Converted Copied Modified Removed

Executable 0 0 0 0 0 0

Declarations 0 0 0 0 0 0

Compiler dir-
ectives 0 0 0 0 0 0

Comments on
their own line 0 0 0 0 0 0

Comments on
lines with
source code 0 0 0 0 0 0

Banner and non-
blank spacers 0 0 0 0 0 0

Blank (empty)

comments 0 0 0 0 0 0

Blank lines 0 0 0 0 0 0

Orgin.Other software component or library

Programmed Generated Converted Copied Modified Removed

267

Executable 0 0 0 0 0 0

Declarations 0 0 0 0 0 0

Compiler dir-
ectives 0 0 0 0 0 0

Comments on
their own line 0 0 0 0 0 0

Comments on
lines with
source code 0 0 0 0 0 0

Banner and non-
blank spacers 0 0 0 0 0 0

Blank (empty)
comments 0 0 0 0 0 0

Blank lines 0 0 0 0 0 0

268

REPORT F

Report Name: Thesis example
File List used: example
Requested by: Kevin J. Walsh

Measured as: Physical source lines

Delivered as: Delivered as source

Counted: 284
Estimated: 0

Total Total Individual
Includes Excludes totals

Statement type
When a line or statement contains more than
one type, classify it as the type with the
highest precedence.

I Executables Precedence => 1 XXXX 157
2 Nonexecutables
3 Declarations 2 XXXX 36
4 Compiler Directives 3 XXXX 0
5 Comments
6 On their own lines 4 XXXX 47
7 On lines with source code 5 XXXX 0
8 Banners and nonblank spacers 6 XXXX 5
9 Blank (empty) comments 7 XXXX 0
10 Blank lines 8 XXXX 39

How Produced

I Programmed XXXX 284
2 Generated with source code generators XXXX 0
3 Converted with automated translators XXXX 0
4 Copied or reused without change XXXX 0
5 Modified XXXX 0
6 Removed XXXX 0

Orgin

I New Work: no prior existence XXXX 284
2 Prior work: taken or adapted from
3 A previous version, build, or release XXXX 0
4 Commercial, off the shelf software

COTS), other than libraries XXXX 0

269

5 Government furnished software (GFS),
other tian reuse libraries XXXX 0

6 Another product XXXX 0
7 A vendor-supplied language support

library (unmodified) XXXX 0
8 A vedor-supplied operating system or

utility (unmodified) XXXX 0
9 A local or modified language support

library or operating system XXXX 0
10 Other commercial library XXXX 0
11 A reuse library (software designed

for reuse) XXXX 0
12 Other software component or library XXXX 0

Usage

1 In or as part of the primary product XXXX 284
2 External to or in support of the

primary product XXXx 0

Development Status

I Estimated or planned XXXX 0
2 Designed XXXX 0
3 Coded XXXX 0
4 Unit tests completed XXXx 0
5 Integrated into components XXXX 0
6 Test readiness review completed XXXX 0
7 Software (CSCI) tests completed XXXX 0
8 Sytem tests completed XXXX 284

270

LIST OF REFERENCES

[BEI 90] Beizer, Boris, Software Testing Techniques, 2d ed., pp 213-242, Van
Nostrand Reinhold, 1990.

[BER 90] Berzins, V., Luqi, Software Engineering with Abstractions, pp 1-21,
Addison-Wesley Publishing Company, 1990

[CSC 92] Communications System Center/Software Department, Tinker Air Force
Base, Oklahoma, "The Source Code Line Counter Program," T. Goff, pp. 1-
8, 17 December, 1992.

[NAS 901 McCabe, Tom, "A Complexity Measure," IEEE Transactions Software
Engineer, pp 308-320, December 1976.

[NAS 90] National Aeronautics and Space Administration, Goddard Space Flight
Center, Transportable Applications Environment Plus User Interface
Developer's Guide, v. 5.1, pp 1-265, April 1991.

[NGU 881 Nguyen, T., Forester, K., ALEX - An Ada Lexical Analysis Generator, Version
1.0, Arcadia Environment Research Project, Department of Information and
Computer Science, University of California, Irvine, 1988.

[SLI 87] Set Laboratories, Inc., PC-METRIC (PASCAL), pp 1-1 to 6-5, 1987.

[SEL 90] Self, J., AFLEX - A fast lexical analyzer generator for Ada, Version 1.1,
Arcadia Environment Research Project, Department of Information and
Computer Science, University of California, Irvine, 1 September 1990.

[SEI 93] Software Engineering Institute, Software Engineering Symposium, The
Business of Software Engineering: The Competitive Edge, The SEI
Measurements Checklist--User Experience, August 1993.

[SEI-A 92] Software Engineering Institute, Technical Report 19, Software Measurement
for DoD Systems: Recommendations for Initial Core Measures, Carleton, A.,
D., and others, pp. 1-68, September 1992.

[SEI-B 92] Software Engineering Institute, Technical Report 20, Software Size
Measurement, Park, R. E., pp. 1-167, September 1992

[SEI-C 92] Software Engineering Institute, Technical Report 21, Software Effort &
Schedule Measurement: A Framework for Counting Staff-Hours and
Reporting Schedule Information, Goethert, W., B., Bailey, E., K., and Busby,
M., B., pp 1-10, September 1992.

271

[SEI-D 92] Software Engineering Institute, Technical Report 22, Software Quality
Measurement: A Framework for Counting Problems and Defects, Florac, W.
A., pp 1-20, September 1992

(SSD 90] Software Systems Design, Inc., ADADL User's Manual, Release 5.0, pp 1-
130, July 1990.

[SUN 90] Sun Microsystems, Inc, SunOS Reference Manual, Revision A of 27 March,
1990.

[TAB 88] Taback, D., Deepak, T., AYACC - Users Manual, Version 1.0, Arcadia
Environment Research Project, Department of Information and Computer
Science, University of California, Irvine, 1988.

[WAR 90] Warner Books Inc., Webster's New World Dictionary, pp 38, 236, August
1990.

272

INITIAL DISTRIBUTION LIST

Defense Technical Information Center 2
Cameron Station
Alexandria, VA 22304-6145

Dudley Knox Library 2
Code 052
Naval Postgraduate School
Monterey, CA 93943-5002

Dr. Timothy J. Shimeall 4
Computer Science Department Code CS/Sm
Naval Postgraduate School
Monterey, CA 93943-5118

MAJ David Gaitros
Computer Science Department Code CS/Ga
Naval Postrgraduate School
Monterey, CA 93943-5118

Dr. Ted Lewis
Computer Science Department Code CS/Lt
Naval Postgraduate School
Monterey, CA 93943-5118

MAJ Kevin J. Walsh 3
18 Carty Ave.
Fort Monmouth, NJ 07703

Ms. Anita Carleton
Software Engineering Institute
Carnegie Mellon University
Pittsburgh, PA 15213-3890

Dr. Marshall Potter
NISMC-03
Bldg. 166
Washington Navy Yard
Washington, DC 20374-5070

273

